Show simple item record

The concurrent variability of East Asian subtropical and polar‐front jets and its implication for the winter climate anomaly in China

dc.contributor.authorXiao, Chuliang
dc.contributor.authorZhang, Yaocun
dc.contributor.authorLofgren, Brent M.
dc.contributor.authorNie, Yu
dc.date.accessioned2016-09-17T23:53:18Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-06-27
dc.identifier.citationXiao, Chuliang; Zhang, Yaocun; Lofgren, Brent M.; Nie, Yu (2016). "The concurrent variability of East Asian subtropical and polar‐front jets and its implication for the winter climate anomaly in China." Journal of Geophysical Research: Atmospheres 121(12): 6787-6801.
dc.identifier.issn2169-897X
dc.identifier.issn2169-8996
dc.identifier.urihttps://hdl.handle.net/2027.42/133534
dc.description.abstractThe variability of East Asian upper level westerly jets in winter is studied with regard to the concurrent existence of subtropical jet (East Asian subtropical jet (EASJ)) and polar‐front jet (East Asian polar‐front jet (EAPJ)) using the National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis. In the distribution of jet occurrence revealed in 6‐hourly data, two jet branches along 30°N and 55°N, corresponding to locations of EASJ and EAPJ, respectively, are separated over the Tibetan Plateau. The leading two modes of zonal‐mean zonal wind in East Asia extracted from a mass‐weighted empirical orthogonal function analysis are characterized by the intensity changes and location displacements of two jets. The key regions for EASJ and EAPJ are then defined to represent variabilities of these two jets. Correlation analysis indicates that the subseasonal variation of EAPJ precedes EASJ by around 5 days, which can be interpreted as wave‐mean flow interactions via synoptic‐scale transient eddy activities. Based on the pentad intensity indices of two jets, the concurrent variabilities of EASJ and EAPJ are investigated with typical temperature and precipitation anomalies in China. The results suggest that by taking account of the two jets, we are able to get a more comprehensive understanding of the winter climate.Key PointsThe leading modes of zonal‐mean zonal wind in East Asia and the concurrent existence of East Asian subtropical jet and polar‐front jetTheir concurrent variability can be interpreted as wave‐mean flow interactions via synoptic‐scale transient eddy activitiesA comprehensive understanding of the winter climate in China from the perspective of double jets
dc.publisherWiley Periodicals, Inc.
dc.subject.othersubtropical jet
dc.subject.otherEast Asia
dc.subject.otherwinter climate
dc.subject.otherpolar‐front jets
dc.titleThe concurrent variability of East Asian subtropical and polar‐front jets and its implication for the winter climate anomaly in China
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133534/1/jgrd53070_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133534/2/jgrd53070.pdf
dc.identifier.doi10.1002/2016JD025038
dc.identifier.sourceJournal of Geophysical Research: Atmospheres
dc.identifier.citedreferenceZhang, Y., X. Kuang, W. Guo, and T. Zhou ( 2006 ), Seasonal evolution of the upper‐tropospheric westerly jet core over East Asia, Geophys. Res. Lett., 33, L11708, doi: 10.1029/2006GL026377.
dc.identifier.citedreferenceHuang, D., J. Zhu, Y. Zhang, and A. Huang ( 2014 ), The different configurations of the East Asian polar front jet and subtropical jet and the associated rainfall anomalies over Eastern China in summer, J. Clim., 27, 8205 – 8220.
dc.identifier.citedreferenceJhun, J.‐G., and E.‐J. Lee ( 2004 ), A new East Asian winter monsoon index and associated characteristics of the winter monsoon, J. Clim., 17, 711 – 726.
dc.identifier.citedreferenceKalnay, E., et al. ( 1996 ), The NCEP/NCAR 40‐Year Reanalysis Project, Bull. Am. Meteorol. Soc., 77, 437 – 471.
dc.identifier.citedreferenceKobayashi, S., et al. ( 2015 ), The JRA‐55 Reanalysis: General specifications and basic characteristics, J. Meteorol. Soc. Jpn., 93, 5 – 48, doi: 10.2151/jmsj.2015-001.
dc.identifier.citedreferenceKoch, P., H. Wernli, and H. C. Daves ( 2006 ), An event‐based jetstream climatology and typology, Int. J. Climatol., 26, 283 – 301.
dc.identifier.citedreferenceKuang, X., and Y. Zhang ( 2005 ), Seasonal variation of the East Asian subtropical westerly jet and its association with the heating field over East Asia, Adv. Atmos. Sci., 22, 831 – 840.
dc.identifier.citedreferenceKuang, X., and Y. Zhang ( 2006 ), Impact of the position abnormalities of East Asian subtropical westerly jet on summer precipitation in middle‐lower reaches of Yangtze River [in Chinese], Plateau Meteorol., 25, 382 – 389.
dc.identifier.citedreferenceKwon, M., J.‐G. Jhun, and K.‐J. Ha ( 2007 ), Decadal change in East Asian summer monsoon circulation in the mid‐1990s, Geophys. Res. Lett., 34, L21706, doi: 10.1029/2007GL031977.
dc.identifier.citedreferenceLee, S., and H.‐K. Kim ( 2003 ), The dynamical relationship between subtropical and eddy‐driven jets, J. Atmos. Sci., 60, 1490 – 1530.
dc.identifier.citedreferenceLi, C., and J. J. Wettstein ( 2012 ), Thermally driven and eddy‐driven jet variability in reanalysis, J. Clim., 25, 1587 – 1596.
dc.identifier.citedreferenceLi, C., J.‐T. Wang, S.‐Z. Lin, and H. ‐R. Cho ( 2004 ), The relationship between East Asian summer monsoon activity and northward jump of the upper westerly jet location, Chin. J. Atmos. Sci., 28, 641 – 658.
dc.identifier.citedreferenceLi, L., and Y. Zhang ( 2014 ), Effects of different configurations of the East Asian subtropical and polar front jets on precipitation during Meiyu season, J. Clim., 27, 6660 – 6672, doi: 10.1175/JCLI-D-14-00021.1.
dc.identifier.citedreferenceLiao, Q., S. Gao, H. Wang, and S. Tao ( 2004 ), Anomalies of the extratropical westerly jet in the North Hemisphere and their impacts on East Asian summer monsoon climate anomalies [in Chinese], Chin. J. Geophys., 47, 10 – 18.
dc.identifier.citedreferenceLiao, Z., and Y. Zhang ( 2013 ), Concurrent variation between the East Asian subtropical jet and polar front jet during persistent snowstorm period in 2008 winter over southern China, J. Geophys. Res. Atmos., 118, 6360 – 6373, doi: 10.1002/jgrd.50558.
dc.identifier.citedreferenceLin, Z., and R. Lu ( 2008 ), Abrupt northward jump of the East Asian upper‐tropospheric jet stream in mid‐summer, J. Meteorol. Soc. Jpn., 86, 857 – 866.
dc.identifier.citedreferenceLu, R., H. Ye, and J.‐G. Jhun ( 2011 ), Weakening of interannual variability in the summer East Asian upper‐tropospheric westerly jet since the mid‐1990s, Adv. Atmos. Sci., 28, 1246 – 1258, doi: 10.1007/s00376-011-0222-5.
dc.identifier.citedreferenceMao, R., D. Gong, and Q. Fang ( 2007 ), Influences of the East Asian jet stream on winter climate in China [in Chinese], J. Appl. Meteorol. Sci., 18, 137 – 146.
dc.identifier.citedreferenceNorth, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng ( 1982 ), Sampling errors in the estimation of empirical orthogonal functions, Mon. Weather Rev., 110, 699 – 706.
dc.identifier.citedreferencePena‐Ortiz, C., D. Gallego, P. Ribera, P. Ordonez, and M. D. C. Alvarez‐Castro ( 2013 ), Observed trends in the global jet stream characteristics during the second half of the 20th century, J. Geophys. Res. Atmos., 118, 2702 – 2713, doi: 10.1002/jgrd.50305.
dc.identifier.citedreferenceRen, X., X. Yang, and C. Chu ( 2010 ), Seasonal variations of the synoptic‐scale transient eddy activity and polar front jet over East Asia, J. Clim., 23, 3222 – 3233.
dc.identifier.citedreferenceRen, X., X. Yang, T. Zhou, and J. Fang ( 2011 ), Diagnostic comparison of winter time East Asian subtropical jet and polar‐front jet: Large‐scale characteristics and transient eddy activities, Acta Meteorol. Sin., 25, 21 – 33.
dc.identifier.citedreferenceRiehl, H. ( 1962 ), Jet streams of the atmosphere, Tech. Rep. 32, 177 pp., Dep. of Atmos. Sci., Colo. State Univ.
dc.identifier.citedreferenceRossby, C. G. ( 1939 ), Relation between variations in the intensity of the zonal circulation of the atmosphere and the displacements of the semi‐permanent centers of action, J. Mar. Res., 2, 38 – 55.
dc.identifier.citedreferenceSchiemann, R., D. Lüthi, and C. Schär ( 2009 ), Seasonality and interannual variability of the westerly jet in the Tibetan Plateau region, J. Clim., 22, 2940 – 2957.
dc.identifier.citedreferenceThompson, D. W. J., and J. M. Wallace ( 1998 ), The Arctic Oscillation signature in the wintertime geopotential height and temperature fields, Geophys. Res. Lett., 25, 1297 – 1300, doi: 10.1029/98GL00950.
dc.identifier.citedreferenceThompson, D. W. J., and J. M. Wallace ( 2000 ), Annular modes in the extratropical circulation. Part I: Month‐to‐month variability, J. Clim., 13, 1000 – 1016.
dc.identifier.citedreferenceWallace, J. M., and D. S. Gutzler ( 1981 ), Teleconnections in the geopotential height field during the Northern Hemisphere winter, Mon. Weather Rev., 109, 784 – 812.
dc.identifier.citedreferenceWatanabe, M. ( 2004 ), Asian jet waveguide and a downstream extension of North Atlantic Oscillation, J. Clim., 17, 4674 – 4691.
dc.identifier.citedreferenceXiao, C., and Y. Zhang ( 2012 ), The East Asian upper‐tropospheric jet streams and associated transient eddy activities simulated by a climate system model BCC‐CSM1.1, Acta Meteorol. Sin., 26, 700 – 716, doi: 10.1007/s13351-012-0603-4.
dc.identifier.citedreferenceXiao, C., and Y. Zhang ( 2015 ), Projected changes of wintertime synoptic‐scale transient eddy activities in the East Asian eddy‐driven jet from CMIP5 experiments, Geophys. Res. Lett., 42, 6008 – 6013, doi: 10.1002/2015GL064641.
dc.identifier.citedreferenceYang, S., K.‐M. Lau, and K.‐M. Kim ( 2002 ), Variations of the East Asian jet stream and Asian‐Pacific‐American winter climate anomalies, J. Clim., 15, 306 – 325.
dc.identifier.citedreferenceYao, Y., H. Lin, and Q. Wu ( 2015 ), Subseasonal variability of precipitation in China during boreal winter, J. Clim., 28, 6548 – 6559.
dc.identifier.citedreferenceYeh, D., S. Tao, and M. Li ( 1958 ), The abrupt change of circulation over Northern Hemisphere during June and October, Acta Meteorol. Sin., 29, 250 – 263.
dc.identifier.citedreferenceZhang, Y., D. Wang, and X. Ren ( 2008 ), Seasonal variation of the meridional wind in the temperate jet stream and its relationship to the Asian Monsoon, Acta Meteorol. Sin., 24, 446 – 454.
dc.identifier.citedreferenceBals‐Elsholz, T. M., E. H. Atallah, L. F. Bosart, T. A. Wasula, M. J. Cempa, and A. R. Lupo ( 2001 ), The wintertime Southern Hemisphere split jet: Structure, variability, and evolution, J. Clim., 14, 4191 – 4215.
dc.identifier.citedreferenceBranstator, G. ( 2002 ), Circumglobal teleconnections, the jet stream waveguide, and the North Atlantic Oscillation, J. Clim., 15, 1983 – 1910.
dc.identifier.citedreferenceDu, Y., Y. Zhang, and Z. Xie ( 2009 ), Impacts of the zonal position of the East Asian westerly jet core on precipitation distribution during Meiyu of China, Acta Meteorol. Sin., 23, 506 – 516.
dc.identifier.citedreferenceEichelberger, S. J., and D. L. Hartmann ( 2007 ), Zonal jet structure and the leading mode of variability, J. Clim., 20, 5149 – 5163, doi: 10.1175/JCLI4279.1.
dc.identifier.citedreferenceHoskins, B. J., and T. Ambrizzi ( 1993 ), Rossby wave propagation on a realistic longitudinally varying flow, J. Atmos. Sci., 50, 1661 – 1671.
dc.identifier.citedreferenceHoskins, B. J., I. N. James, and G. H. White ( 1983 ), The shape, propagation and mean‐flow interaction of large‐scale weather systems, J. Atmos. Sci., 40, 1595 – 1612.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.