Show simple item record

Epigenome‐wide DNA methylation analysis implicates neuronal and inflammatory signaling pathways in adult murine hepatic tumorigenesis following perinatal exposure to bisphenol A

dc.contributor.authorWeinhouse, Caren
dc.contributor.authorSartor, Maureen A.
dc.contributor.authorFaulk, Christopher
dc.contributor.authorAnderson, Olivia S.
dc.contributor.authorSant, Karilyn E.
dc.contributor.authorHarris, Craig
dc.contributor.authorDolinoy, Dana C.
dc.date.accessioned2016-09-17T23:53:35Z
dc.date.available2017-10-05T14:33:48Zen
dc.date.issued2016-07
dc.identifier.citationWeinhouse, Caren; Sartor, Maureen A.; Faulk, Christopher; Anderson, Olivia S.; Sant, Karilyn E.; Harris, Craig; Dolinoy, Dana C. (2016). "Epigenome‐wide DNA methylation analysis implicates neuronal and inflammatory signaling pathways in adult murine hepatic tumorigenesis following perinatal exposure to bisphenol A." Environmental and Molecular Mutagenesis 57(6): 435-446.
dc.identifier.issn0893-6692
dc.identifier.issn1098-2280
dc.identifier.urihttps://hdl.handle.net/2027.42/133545
dc.publisherWiley Periodicals, Inc.
dc.subject.otherendocrine disruptors
dc.subject.otherdevelopmental origins of health and disease (DOHaD)
dc.subject.otherepigenetics
dc.subject.otherenvironmental epigenetics
dc.subject.otherbisphenol A (BPA)
dc.subject.otherhepatocellular carcinoma
dc.titleEpigenome‐wide DNA methylation analysis implicates neuronal and inflammatory signaling pathways in adult murine hepatic tumorigenesis following perinatal exposure to bisphenol A
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133545/1/em22024.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133545/2/em22024_am.pdf
dc.identifier.doi10.1002/em.22024
dc.identifier.sourceEnvironmental and Molecular Mutagenesis
dc.identifier.citedreferencePrins GS, Hu WY, Shi GB, Hu DP, Majumdar S, Li G, Huang K, Nelles JL, Ho SM, Walker CL, Kajdacsy‐Balla A, van Breemen RB. 2014. Bisphenol A promotes human prostate stem‐progenitor cell self‐renewal and increases in vivo carcinogenesis in human prostate epithelium. Endocrinology 155: 805 – 817.
dc.identifier.citedreferenceDhimolea E, Wadia PR, Murray TJ, Settles ML, Treitman JD, Sonnenschein C, Shioda T, Soto AM. 2014. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development. PloS One 9: e99800.
dc.identifier.citedreferenceDoherty LF, Bromer JG, Zhou Y, Aldad TS, Taylor HS. 2010. In utero exposure to diethylstilbestrol (DES) or bisphenol‐A (BPA) increases EZH2 expression in the mammary gland: An epigenetic mechanism linking endocrine disruptors to breast cancer. Horm Cancer 1: 146 – 155.
dc.identifier.citedreferenceDolinoy DC, Jirtle RL. 2008. Environmental epigenomics in human health and disease. Environ Mol Mutagen 49: 4 – 8.
dc.identifier.citedreferenceDolinoy DC, Huang D, Jirtle RL. 2007. Maternal nutrient supplementation counteracts bisphenol A‐induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A 104: 13056 – 13061.
dc.identifier.citedreferenceDoshi T, Mehta SS, Dighe V, Balasinor N, Vanage G. 2011. Hypermethylation of estrogen receptor promoter region in adult testis of rats exposed neonatally to bisphenol A. Toxicology 289: 74 – 82.
dc.identifier.citedreferenceJirtle RL, Skinner MK. 2007. Environmental epigenomics and disease susceptibility. Nat Rev Genet 8: 253 – 262.
dc.identifier.citedreferenceKim JH, Sartor MA, Rozek LS, Faulk C, Anderson OS, Jones TR, Nahar MS, Dolinoy DC. 2014. Perinatal bisphenol A exposure promotes dose‐dependent alterations of the mouse methylome. BMC Genom 15: 30.
dc.identifier.citedreferenceKnigge U, Thuesen B, Wollesen F, Dejgaard A, Christiansen PM. 1984. Histamine‐induced paradoxical growth hormone response to thyrotropin‐releasing hormone in normal men. J Clin Endocrinol Metab 58: 692 – 697.
dc.identifier.citedreferenceLee TK, Man K, Poon RTP, Lo CM, Yuen AP, Ng IO, Leonard W, Fan ST. 2006. Signal transducers and activators of transcription 5b activation enhances hepatocellular carcinoma aggressiveness through induction of epithelial‐mesenchymal transition. Cancer Research 66: 9948 – 9956.
dc.identifier.citedreferenceLiu SP, Li YS, Chen YJ, Chiang EP, Li AF, Lee YH, Tsai TF, Hsiao M, Huang SF, Chen YM. 2007. Glycine N‐methyltransferase‐/‐ mice develop chronic hepatitis and glycogen storage disease in the liver. Hepatology (Baltimore, Md.) 46: 1413 – 1425.
dc.identifier.citedreferenceLukanova A, Becker S, Hüsing A, Schock H, Fedirko V, Trepo E, Trichopoulou A, Bamia C, Lagiou P, Benetou V, et al 2014. Prediagnostic plasma testosterone, sex hormone‐binding globulin, IGF‐I and hepatocellular carcinoma: Etiological factors or risk markers? Int J Cancer 134: 164 – 173.
dc.identifier.citedreferenceNiu L, Wang X, Li J, Huang Y, Yang Z, Chen F, Ni H, Jin Y, Lu X, Cao Q. 2007. Leptin stimulates alpha1(I) collagen expression in human hepatic stellate cells via the phosphatidylinositol 3‐kinase/Akt signalling pathway. Liver Int 27: 1265 – 1272.
dc.identifier.citedreferenceRochester JR. 2013. Bisphenol A and human health: A review of the literature. Reprod Toxicol (Elmsford, N.Y.) 42: 132 – 155.
dc.identifier.citedreferenceRountree CB, Senadheera S, Mato JM, Crooks GM, Lu SC. 2008. Expansion of liver cancer stem cells during aging in methionine adenosyltransferase 1A‐deficient mice. Hepatology (Baltimore, Md.) 47: 1288 – 1297.
dc.identifier.citedreferenceSartor MA, Leikauf GD, Medvedovic M. 2009. LRpath: A logistic regression approach for identifying enriched biological groups in gene expression data. Bioinformatics (Oxford, England) 25: 211 – 217.
dc.identifier.citedreferenceSekine Y, Yamamoto T, Yumioka T, Imoto S, Kojima H, Matsuda T. 2004. Cross‐talk between endocrine‐disrupting chemicals and cytokine signaling through estrogen receptors. Biochemical and Biophysical Research Communications, 315 ( 3 ), 692 – 698.
dc.identifier.citedreferenceShi L, Feng Y, Lin H, Ma R, Cai X. 2014. Role of estrogen in hepatocellular carcinoma: Is inflammation the key? J Transl Med 12: 93.
dc.identifier.citedreferenceSingh S, Li SSL. 2012. Epigenetic effects of environmental chemicals bisphenol A and phthalates. Int J Mol Sci 13: 10143 – 10153.
dc.identifier.citedreferenceTang W, Morey LM, Cheung YY, Birch L, Prins GS, Ho S. 2012. Neonatal exposure to estradiol/bisphenol A alters promoter methylation and expression of Nsbp1 and Hpcal1 genes and transcriptional programs of Dnmt3a/b and Mbd2/4 in the rat prostate gland throughout life. Endocrinology 153: 42 – 55.
dc.identifier.citedreferenceTexel SJ, Camandola S, Ladenheim B, Rothman SM, Mughal MR, Unger EL, Cadet JL, Mattson MP. 2012. Ceruloplasmin deficiency results in an anxiety phenotype involving deficits in hippocampal iron, serotonin, and BDNF. J Neurochem 120: 125 – 134.
dc.identifier.citedreferenceThompson N, Huber K, Bedürftig M, Hansen K, Miles‐Chan J, Breier BH. 2014. Metabolic programming of adipose tissue structure and function in male rat offspring by prenatal undernutrition. Nutr Metab 11: 50.
dc.identifier.citedreferenceUdy GB, Towers RP, Snell RG, Wilkins RJ, Park SH, Ram PA, Waxman DJ, Davey HW. 1997. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc Natl Acad Sci U S A 94: 7239 – 7244.
dc.identifier.citedreferenceVandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJR, Schoenfelder G. 2012. Urinary, circulating, and tissue biomonitoring studies indicate widespread exposure to bisphenol A. Ciên Saúde Colet 17: 407 – 434.
dc.identifier.citedreferenceWang H, Li J, Gao Y, Xu Y, Pan Y, Tsuji I, Sun ZJ, Li XM. 2010. Xeno‐oestrogens and phyto‐oestrogens are alternative ligands for the androgen receptor. Asian J Androl 12: 535 – 547.
dc.identifier.citedreferenceWaterland RA, Jirtle RL. 2003. Transposable elements: Targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23: 5293 – 5300.
dc.identifier.citedreferenceWeinhouse C, Anderson OS, Bergin IL, Vandenbergh DJ, Gyekis JP, Dingman MA, Yang J, Dolinoy DC. 2014. Dose‐dependent incidence of hepatic tumors in adult mice following perinatal exposure to bisphenol A. Environ Health Perspect 122: 485 – 491.
dc.identifier.citedreferenceWeinhouse C, Bergin IL, Harris C, Dolinoy DC. 2015. Stat3 is a candidate epigenetic biomarker of perinatal bisphenol A exposure associated with murine hepatic tumors with implications for human health. Epigenetics 10: 1099 – 1110.
dc.identifier.citedreferenceWelshons WV, Nagel SC, vom Saal FS. 2006. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology 147: S56 – S69.
dc.identifier.citedreferenceFarges O, Dokmak S. 2010. Malignant transformation of liver adenoma: An analysis of the literature. Dig Surg 27: 32 – 38.
dc.identifier.citedreferenceFrempong BA, Ricks M, Sen S, Sumner AE. 2008. Effect of low‐dose oral contraceptives on metabolic risk factors in African‐American women. J Clin Endocrinol Metab 93: 2097 – 2103.
dc.identifier.citedreferenceGonzález‐Lara MF, Córdova‐Ramón JC, Gamboa‐Domínguez A, Cosme‐Labarthe J, Carrillo‐Pérez DL. 2013. Hepatocellular carcinoma arising in a telangiectatic hepatocellular adenoma. Ann Hepatol 12: 626 – 628.
dc.identifier.citedreferenceGreathouse KL, Bredfelt T, Everiit JI, Lin K, Berry T, Kannan K, Mittelstadt ML, Ho SM, Walker CL. 2012. Environmental Estrogens Differentially Engage the Histone Methyltransferase EZH2 to Increase Risk of Uterine Tumorigenesis. Mol Cancer Res: MCR 10: 546 – 557.
dc.identifier.citedreferenceHanahan D, Weinberg RA. 2011. Hallmarks of cancer: The next generation. Cell 144: 646 – 674.
dc.identifier.citedreferenceHo SM, Tang WY, Belmonte de Frausto J, Prins GS. 2006. Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66: 5624 – 5632.
dc.identifier.citedreferenceAcevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM. 2013. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect 121: 1040 – 1046.
dc.identifier.citedreferenceAnderson OS, Nahar MS, Faulk C, Jones TR, Liao C, Kannan K, Weinhouse C, Rozek LS, Dolinoy DC. 2012. Epigenetic responses following maternal dietary exposure to physiologically relevant levels of bisphenol A. Environ Mol Mutagen 53: 334 – 342.
dc.identifier.citedreferenceAnderson OS, Peterson KE, Sanchez BN, Zhang Z, Mancuso P, Dolinoy DC. 2013. Perinatal bisphenol A exposure promotes hyperactivity, lean body composition, and hormonal responses across the murine life course. FASEB J 27: 1784 – 1792.
dc.identifier.citedreferenceAshburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al 2000. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25: 25 – 29.
dc.identifier.citedreferenceAvissar‐Whiting M, Veiga KR, Uhl KM, Maccani MA, Gagne LA, Moen EL, Marsit CJ. 2010. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol (Elmsford, N.Y.) 29: 401 – 406.
dc.identifier.citedreferenceBaccarelli A, Bollati V. 2009. Epigenetics and environmental chemicals. Curr Opin Pediatr 21: 243 – 251.
dc.identifier.citedreferenceBerenson AB, van den Berg P, Williams KJ, Rahman M. 2011. Effect of injectable and oral contraceptives on glucose and insulin levels. Obstet Gynecol 117: 41 – 47.
dc.identifier.citedreferenceBromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS. 2010. Bisphenol‐A exposure in utero leads to epigenetic alterations in the developmental programming of uterine estrogen response. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 24: 2273 – 2280.
dc.identifier.citedreferenceCalafat AM, Ye X, Wong LY, Reidy JA, Needham LL. 2008. Exposure of the U.S. population to bisphenol A and 4‐tertiary‐octylphenol: 2003‐2004. Environ Health Perspect 116: 39 – 44.
dc.identifier.citedreferenceCarcinogenesis Bioassay of Bisphenol A (CAS No. 80‐05‐7) in F344 Rats and B6C3F1 Mice (Feed Study). ( 1982 ). National Toxicology Program Technical Report Series, 215, 1–116.
dc.identifier.citedreferenceCastrogiovanni P, Musumeci G, Trovato FM, Avola R, Magro G, Imbesi R. 2014. Effects of high‐tryptophan diet on pre‐ and postnatal development in rats: A morphological study. Eur J Nutr 53: 297 – 308.
dc.identifier.citedreferenceDavis AP, Grondin CJ, Lennon‐Hopkins K, Saraceni‐Richards C, Sciaky D, King BL, Wiegers TC, Mattingly CJ. 2014. The Comparative Toxicogenomics Database’s 10th Year Anniversary: Update 2015. Nucleic Acids Res, 2014 Oct 17 Epub.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.