Show simple item record

Temporal and spatial dynamics of large lake hypoxia: Integrating statistical and three‐dimensional dynamic models to enhance lake management criteria

dc.contributor.authorBocaniov, Serghei A.
dc.contributor.authorScavia, Donald
dc.date.accessioned2016-09-17T23:53:37Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-06
dc.identifier.citationBocaniov, Serghei A.; Scavia, Donald (2016). "Temporal and spatial dynamics of large lake hypoxia: Integrating statistical and three‐dimensional dynamic models to enhance lake management criteria." Water Resources Research 52(6): 4247-4263.
dc.identifier.issn0043-1397
dc.identifier.issn1944-7973
dc.identifier.urihttps://hdl.handle.net/2027.42/133547
dc.description.abstractHypoxia or low bottom water dissolved oxygen (DO) is a world‐wide problem of management concern requiring an understanding and ability to monitor and predict its spatial and temporal dynamics. However, this is often made difficult in large lakes and coastal oceans because of limited spatial and temporal coverage of field observations. We used a calibrated and validated three‐dimensional ecological model of Lake Erie to extend a statistical relationship between hypoxic extent and bottom water DO concentrations to explore implications of the broader temporal and spatial development and dissipation of hypoxia. We provide the first numerical demonstration that hypoxia initiates in the nearshore, not the deep portion of the basin, and that the threshold used to define hypoxia matters in both spatial and temporal dynamics and in its sensitivity to climate. We show that existing monitoring programs likely underestimate both maximum hypoxic extent and the importance of low oxygen in the nearshore, discuss implications for ecosystem and drinking water protection, and recommend how these results could be used to efficiently and economically extend monitoring programs.Key Points:We modeled seasonal and spatial dynamics of Lake Erie hypoxiaWe showed hypoxia starts nearshore and can persist after traditional monitoring programs endWe recommend monitoring adjustments and explore impacts of different hypoxia definitions
dc.publisherWiley Periodicals, Inc.
dc.publisherWayne State Univ. Press
dc.subject.otherLake Erie
dc.subject.otherhypoxia
dc.subject.othermonitoring
dc.subject.othermodeling
dc.titleTemporal and spatial dynamics of large lake hypoxia: Integrating statistical and three‐dimensional dynamic models to enhance lake management criteria
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelNatural Resources and Environment
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133547/1/wrcr22074.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133547/2/wrcr22074-sup-0001-2015WR018170-s01.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133547/3/wrcr22074_am.pdf
dc.identifier.doi10.1002/2015WR018170
dc.identifier.sourceWater Resources Research
dc.identifier.citedreferenceR Core Team ( 2014 ), R: A Language and Environment for Statistical Computing, R Found. for Stat. Comput., Vienna, Austria. [Available at < http://www.R-project.org/ >, accessed 15 June 2015.]
dc.identifier.citedreferenceRead, J. S., D. P. Hamilton, I. D. Jones, K. Muraoka, L. A. Winslow, R. Kroiss, C. H. Wu, and E. Gaiser ( 2011 ), Derivation of lake mixing and stratification indices from high‐resolution lake buoy data, Environ. Modell. Software, 26 ( 11 ), 1325 – 1336.
dc.identifier.citedreferenceRenaud, M. L. ( 1986 ), Hypoxia in Louisiana coastal waters during 1983: Implications for fisheries, Fish. B‐NOAA, 84, 19 – 26.
dc.identifier.citedreferenceRoberts, J. J., T. O. Höök, S. A. Ludsin, S. A. Pothoven, H. A. Vanderploeg, and S. B. Brandt ( 2009 ), Effects of hypolimnetic hypoxia on foraging and distributions of Lake Erie yellow perch, J. Exp. Mar. Biol. Ecol., 381, S132 – S142.
dc.identifier.citedreferenceRodgers, G. K., and D. V. Anderson ( 1961 ), A preliminary study of the energy budget of Lake Ontario, J. Fish. Res. Board Can., 18 ( 4 ), 617 – 636.
dc.identifier.citedreferenceRuberg, S. A., E. Guasp, N. Hawley, R. W. Muzzi, S. B. Brandt, H. A. Vanderploeg, J. C. Lane, T. Miller, and S. A. Constant ( 2008 ), Societal benefits of the real‐time coastal observation network (ReCON): Implications for municipal drinking water quality, Mar. Technol. Soc. J., 42 ( 3 ), 103 – 109.
dc.identifier.citedreferenceRucinski, D. K., J. V. DePinto, D. Scavia, and D. Beletsky ( 2014 ), Modeling Lake Erie’s hypoxia response to nutrient loads and physical variability, J. Great Lakes Res., 40, 151 – 161.
dc.identifier.citedreferenceSambridge, M., J. Braun, and H. McQueen ( 1995 ), Geophysical parametrization and interpolation of irregular data using natural neighbours, Geophys. J. Int., 122, 837 – 857.
dc.identifier.citedreferenceScavia, D., and J. V. DePinto ( 2015 ), Great Lakes Water Quality Agreement Nutrient Annex Objectives and Targets Task Team Ensemble Modeling Report, 229 pp., University of Michigan, Ann Arbor, Mich. [Available at < http://tinyurl.com/ng6d3tn >, accessed 10 Aug. 2015.]
dc.identifier.citedreferenceScavia, D., et al.( 2014 ), Assessing and addressing the re‐eutrophication of Lake Erie: Central basin hypoxia. J. Great Lakes Res., 40 ( 2 ), 226 – 246.
dc.identifier.citedreferenceSchertzer, W. M., J. H Saylor, F. M. Boyce, D. G. Robertson, and F. Rosa ( 1987 ), Seasonal thermal cycle of Lake Erie, J. Great Lakes Res., 13 ( 4 ), 468 – 486.
dc.identifier.citedreferenceSchmidt, W. ( 1928 ), Über die Temperatur‐und Stabilitätsverhältnisse von Seen, Geograf. Ann., 10, 145 – 177.
dc.identifier.citedreferenceSchwab, D. J., and J. A. Morton ( 1984 ), Estimation of overlake wind speed from overland wind speed: A comparison of three methods, J. Great Lakes Res., 10 ( 1 ), 68 – 72, doi: 10.1016/S0380-1330(84)71808-9.
dc.identifier.citedreferenceSly, L. I., M. C. Hodgkinson, and V. Arunpairojana ( 1990 ), Deposition of manganese in a drinking water distribution system, Appl. Environ. Microb., 56 ( 3 ), 628 – 639.
dc.identifier.citedreferenceU.S. Environmental Protection Agency ( 2010 ), Chesapeake Bay total maximum daily load for nitrogen, phosphorus, and sediment, U.S. Environ. Protect. Agency, Chesapeake Bay Program Off., Annapolis, Md. [Available at < http://www.epa.gov/reg3wapd/tmdl/ChesapeakeBay/tmdlexec.html >, accessed 15 June 2015.]
dc.identifier.citedreferenceVäisälä, V. ( 1925 ), Über die Wirkung der Windschwankungen auf die Pilotbeobachtungen, Soc. Sci. Fenn. Commentat. Phys. Math., 2 ( 19 ), 19 – 37.
dc.identifier.citedreferenceVanderploeg, H. A., S. A. Ludsin, S. A. Ruberg, T. O. Höök, S. A. Pothoven, S. B. Brandt, G. A. Lang, J. R. Liebig, and J. F. Cavaletto ( 2009 ), Hypoxia affects spatial distributions and overlap of pelagic fish, zooplankton, and phytoplankton in Lake Erie, J. Exp. Mar. Biol. Ecol., 381, S92 – S107.
dc.identifier.citedreferenceVaquer‐Sunyer, R., and C. M. Duarte ( 2008 ), Thresholds of hypoxia for marine biodiversity, Proc. Natl. Acad. Sci. U. S. A., 105 ( 40 ), 15,452 – 15,457.
dc.identifier.citedreferenceZhou, Y., D. R. Obenour, D. Scavia, T. H. Johengen, and A. M. Michalak ( 2013 ), Spatial and temporal trends in Lake Erie hypoxia, 1987–2007, Environ. Sci. Technol., 47, 899 – 905, doi: 10.1021/es303401b.
dc.identifier.citedreferenceZhou, Y., D. Scavia, and A. M. Michalak ( 2014 ), Nutrient loading and meteorological conditions explain interannual variability of hypoxia in the Chesapeake Bay, Limnol. Oceanogr., 59, 373 – 374, doi: 10.4319/lo.2014.59.2.0373.
dc.identifier.citedreferenceZhou, Y., A. M. Michalak, D. Beletsky, Y. R. Rao, and R. P. Richards ( 2015 ), Record‐breaking Lake Erie hypoxia during 2012 drought, Environ. Sci. Technol., 49 ( 2 ), 800 – 807, doi: 10.1021/es503981n.
dc.identifier.citedreferenceArend, K. K., D. Beletsky, J. V. DePinto, S. A. Ludsin, J. J. Roberts, D. K. Rucinski, D. Scavia, D. J. Schwab, and T. O. Höök ( 2011 ), Seasonal and interannual effects of hypoxia on fish habitat quality in central Lake Erie, Freshwater Biol., 56 ( 2 ), 366 – 383.
dc.identifier.citedreferenceBeeton, A. M. ( 1963 ), Eutrophication of the St. Lawrence Great Lakes, Limnol. Oceanogr., 10, 240 – 254.
dc.identifier.citedreferenceBeletsky, D., N. Hawley, and Y. R. Rao ( 2013 ), Modeling summer circulation and thermal structure of Lake Erie, J. Geophys. Res. Oceans, 118, 6238 – 6252, doi: 10.1002/2013JC008854.
dc.identifier.citedreferenceBocaniov, S. A., R. E. H. Smith, C. M. Spillman, M. R. Hipsey, and L. F. Leon ( 2014a ), The nearshore shunt and the decline of the phytoplankton spring bloom in the Laurentian Great Lakes: Insights from a three‐dimensional lake model, Hydrobiologia, 731, 151 – 172.
dc.identifier.citedreferenceBocaniov, S. A., C. Ullmann, K. Rinke, K. G. Lamb, and B. Boehrer ( 2014b ), Internal waves and mixing in a stratified reservoir: Insights from three‐dimensional modeling, Limnologica, 49, 52 – 67.
dc.identifier.citedreferenceBolsenga, S., and C. Herdendorf (Eds.) ( 1993 ), Lake Erie and Lake St. Clair handbook, Wayne State Univ. Press, Detroit, Mich.
dc.identifier.citedreferenceBridgeman, T. B., J. D Chaffin, and J. F. Filbrun ( 2013 ), A novel method for tracking western Lake Erie Microcystis blooms, 2002–2011, J. Great Lakes Res., 39 ( 1 ), 83 – 89.
dc.identifier.citedreferenceBrunt, D. ( 1927 ), The period of simple vertical oscillations in the atmosphere, Q. J. R. Meteorol. Soc., 53, 30 – 32.
dc.identifier.citedreferenceBurns, N. M., D. C. Rockwell, P. E. Bertram, D. M. Dolan, and J. J. H. Ciborowski ( 2005 ), Trends in temperature, Secchi depth, and dissolved oxygen depletion rates in the central basin of Lake Erie, 1983–2002, J. Great Lakes Res., 31, 35 – 49.
dc.identifier.citedreferenceChesapeake Bay Watershed Agreement ( 2014 ), Chesapeake Bay Watershed Agreement, Chesapeake Bay Program, Annapolis, Md. [Available at < http://www.chesapeakebay.net/chesapeakebaywatershedagreement/page >, accessed 23 June 2015.]
dc.identifier.citedreferenceCommittee on Environment and Natural Resources (CENR) ( 2010 ), Scientific Assessment of Hypoxia in U.S. Coastal Waters, Interagency Working Group on Harmful Algal Blooms, Hypoxia, and Human Health of the Joint Subcommittee on Ocean Science and Technology, Washington, D. C. [Available at < http://www.whitehouse.gov/sites/default/files/microsites/ostp/hypoxia-report.pdf >, accessed 23 June 2015].
dc.identifier.citedreferenceCommittee on Environment and Natural Resources (CENR) ( 2000 ), An Integrated Assessment of Hypoxia in the Northern Gulf of Mexico. National Science and Technology Council Committee on Environment and Natural Resources, 58 pp., Washington, D. C. [Available at < http://oceanservice.noaa.gov/products/hypox_finalfront.pdf >, accessed 23 June 2015.]
dc.identifier.citedreferenceDavison, W. ( 1993 ), Iron and manganese in lakes, Earth Sci. Rev., 34 ( 2 ), 119 – 163.
dc.identifier.citedreferenceDePinto, J. V., T. C Young, and L. M. McIlroy ( 1986 ), Great Lakes water quality improvement, Environ. Sci. Technol., 20 ( 8 ), 752 – 759.
dc.identifier.citedreferenceDiaz, R. J. ( 2001 ), Overview of hypoxia around the world, J. Environ. Qual., 30 ( 2 ), 275 – 281.
dc.identifier.citedreferenceDiaz, R. J., and R. Rosenberg ( 2008 ), Spreading dead zones and consequences for marine ecosystems, Science, 321 ( 5891 ), 926 – 929.
dc.identifier.citedreferenceDolan, D. M. ( 1993 ), Point source loadings of phosphorus to Lake Erie: 1986–1990, J. Great Lakes Res., 19 ( 2 ), 212 – 223.
dc.identifier.citedreferenceDolan, D. M., and S. C. Chapra ( 2012 ), Great Lakes total phosphorus revisited: 1. Loading analysis and update (1994–2008), J. Great Lakes Res., 38 ( 4 ), 730 – 740.
dc.identifier.citedreferenceFarrell, A. P., and J. G. Richards ( 2009 ), Defining hypoxia: An integrative synthesis of the responses of fish to hypoxia, in Hypoxia, edited by J. G. Richards, A. P. Farrell, and C. J. Brauner, pp. 487 – 503, Academic, London, U. K., doi: 10.1016/S1546-5098(08)00011-3.
dc.identifier.citedreferenceGreat Lakes Commission ( 2013 ), Annual Report of the Great Lakes Regional Water Use Database Representing 2011 Water Use Data, Issue 21, Ann Arbor, Mich. [Available at < http://projects.glc.org/waterusedata//pdf/wateruserpt2013.pdf >, accessed 15 July 2015.]
dc.identifier.citedreferenceHansson, M., L. Andersson, and P. Axe ( 2011 ), Areal extent and volume of anoxia and hypoxia in the Baltic Sea, 1960–2011, SMHI Rep. Ser. Rep. Oceanogr., 42, Swedish Meteorological and Hydrological Institute (SMHI), Norrköping, Sweden.
dc.identifier.citedreferenceHawley, N., T. H. Johengen, Y. R. Rao, S. A. Ruberg, D. Beletsky, S. A. Ludsin, B. J. Eadie, D. J. Schwab, T. E. Croley, and S. B. Brandt ( 2006 ), Lake Erie hypoxia prompts Canada‐U.S. study, Eos Trans. AGU, 87 ( 32 ), 313 – 319, doi: 10.1029/2006EO320001.
dc.identifier.citedreferenceHelsinki Commission ( 2007 ), HELCOM Baltic Sea Action Plan, Baltic Mar. Environ. Prot. Comm., 102 pp., Helsinki, Finland. [Available at < http://www.helcom.fi/baltic-sea-action-plan >, accessed 15 June 2015.]
dc.identifier.citedreferenceHipsey, M. R. ( 2008 ), The CWR Computational Aquatic Ecosystem Dynamics Model CAEDYM. User Manual, Cent. for Water Res., Univ. of West. Aust., Perth, Australia.
dc.identifier.citedreferenceHodges, B., and C. Dallimore ( 2006 ), Estuary, Lake and Coastal Ocean Model: ELCOM. Science Manual. Cent. of Water Res., Univ. of West. Aust., Perth, Australia.
dc.identifier.citedreferenceHodges, B., J. Imberger, A. Saggio, and K. Winters ( 2000 ), Modeling basin‐scale internal waves in a stratified lake, Limnol. Oceanogr., 45, 1603 – 1620.
dc.identifier.citedreferenceHowarth, R., F. Chan, D. J. Conley, J. Garnier, S. C. Doney, R. Marino, and G. Billen ( 2011 ), Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems, Front. Ecol. Environ., 9, 18 – 26.
dc.identifier.citedreferenceHuang, A., Y. R. Rao, Y. Lu, and J. Zhao ( 2010 ), Hydrodynamic modeling of Lake Ontario: An intercomparison of three models, J. Geophys. Res., 115, C12076, doi: 10.1029/2010JC006269.
dc.identifier.citedreferenceInternational Commission for the Protection of the Danube River ( 2006 ), Danube Pollution Reduction Programme. [Available at < http://www.icpdr.org/icpdr-pages/dprp.htm >, accessed 29 June 2015.]
dc.identifier.citedreferenceInternational Commission for the Protection of the Danube River ( 2009 ), Danube River Basin District Management Plan. [Available at < http://www.icpdr.org/icpdr-files/15091 >, accessed 15 July 2015.]
dc.identifier.citedreferenceIdso, S. B. ( 1973 ), On the concept of lake stability, Limnol. Oceanogr., 18, 681 – 683.
dc.identifier.citedreferenceIdso, S. B., and R. D. Jackson ( 1969 ), Thermal radiation from the atmosphere, J. Geophys. Res., 74, 5397 – 5403.
dc.identifier.citedreferenceInternational Joint Commission (IJC) ( 2012 ), Great Lakes Water Quality Agreement 2012. Protocol Amending the Agreement between Canada and the United States of America on Great Lakes Water Quality, Windsor, Ontario, Canada, 7 Sept. 2012.
dc.identifier.citedreferenceImberger, J. ( 1985 ), The diurnal mixed layer, Limnol. Oceanogr., 30 ( 4 ), 737 – 770.
dc.identifier.citedreferenceKraus, R. T., C. T Knight, T. M. Farmer, A. M. Gorman, P. D. Collingsworth, G. J. Warren, P. M. Kocovsky, and J. D. Conroy ( 2015 ), Dynamic hypoxic zones in Lake Erie compress fish habitat, altering vulnerability to fishing gears, Can. J. Fish. Aquat. Sci., 72 ( 6 ), 797 – 806, doi: 10.1139/cjfas-2014-0517.
dc.identifier.citedreferenceLeon, L. F., R. E. H. Smith, M. R. Hipsey, S. A. Bocaniov, S. N. Higgins, R. E. Hecky, J. P. Antenucci, J. A. Imberger, and S. J. Guildford ( 2011 ), Application of a 3D hydrodynamic‐biological model for seasonal and spatial dynamics of water quality and phytoplankton in Lake Erie, J. Great. Lakes. Res., 37, 41 – 53.
dc.identifier.citedreferenceLiu, W., S. A. Bocaniov, K. G. Lamb, and R. E. H. Smith ( 2014 ), Three dimensional modeling of the effects of changes in meteorological forcing on the thermal structure of Lake Erie, J. Great Lakes Res., 40, 827 – 840.
dc.identifier.citedreferenceMichalak, A. M., et al. ( 2013 ), Record‐setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions, Proc. Natl. Acad. Sci. U. S. A., 110 ( 16 ), 6448 – 6452.
dc.identifier.citedreferenceMississippi River/Gulf of Mexico Watershed Nutrient Task Force (MR/GOM) ( 2001 ), Action plan for reducing, mitigating, and controlling hypoxia in the northern Gulf of Mexico, Off. of Wetlands, Oceans, and Watersheds, U.S. Environ. Prot. Agency, Washington, D. C.
dc.identifier.citedreferenceMississippi River/Gulf of Mexico Watershed Nutrient Task Force (MR/GOM) ( 2008 ), Gulf hypoxia action plan, Off. of Wetlands, Oceans, and Watersheds, U.S. Environ. Protect. Agency, Washington, D. C.
dc.identifier.citedreferenceObenour, D., D. Scavia, N. R. Rabalais, E. R. Turner, and A. Michalak ( 2013 ), A retrospective analysis of mid‐summer hypoxic area and volume in the northern Gulf of Mexico, 1985‐2011, Environ. Sci. Technol., 47, 9808 − 9815.
dc.identifier.citedreferenceObenour, D. R., A. M. Michalak, and D. Scavia ( 2015 ), Assessing biophysical controls on Gulf of Mexico hypoxia through probabilistic modeling, Ecol. Appl., 25 ( 2 ), 492 – 505.
dc.identifier.citedreferenceParkinson, C. L., and W. M. Washington ( 1979 ), A large‐scale numerical model of sea ice, J. Geophys. Res., 84, 311 – 337.
dc.identifier.citedreferenceRabalais, N. N., R. E. Turner, and W. J. Wiseman Jr. ( 2002 ), Gulf of Mexico hypoxia, AKA" The dead zone ", Annu. Rev. Ecol. Syst., 33, 235 – 263.
dc.identifier.citedreferenceRabalais, N. N., R. E. Turner, B. S. Gupta, D. F. Boesch, P. Chapman, and M. C. Murrell ( 2007 ), Hypoxia in the northern Gulf of Mexico: Does the science support the plan to reduce, mitigate, and control hypoxia?, Estuarine Coasts, 30 ( 5 ), 753 – 772.
dc.identifier.citedreferenceRao, Y. R., T. Howell, S. B. Watson, and S. Abernethy ( 2014 ), On hypoxia and fish kills along the north shore of Lake Erie, J. Great Lakes Res., 40, 187 – 191.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.