Show simple item record

Evaluation of receptorâ ligand mechanisms of dualâ targeted particles to an inflamed endothelium

dc.contributor.authorFromen, Catherine A.
dc.contributor.authorFish, Margaret B.
dc.contributor.authorZimmerman, Anthony
dc.contributor.authorAdili, Reheman
dc.contributor.authorHolinstat, Michael
dc.contributor.authorEniola‐adefeso, Omolola
dc.date.accessioned2016-09-17T23:54:12Z
dc.date.available2017-06-01T16:55:23Zen
dc.date.issued2016-03
dc.identifier.citationFromen, Catherine A.; Fish, Margaret B.; Zimmerman, Anthony; Adili, Reheman; Holinstat, Michael; Eniola‐adefeso, Omolola (2016). "Evaluation of receptorâ ligand mechanisms of dualâ targeted particles to an inflamed endothelium." Bioengineering & Translational Medicine 1(1): 103-115.
dc.identifier.issn2380-6761
dc.identifier.issn2380-6761
dc.identifier.urihttps://hdl.handle.net/2027.42/133573
dc.description.abstractVascularâ targeted carriers (VTCs) are designed as leukocyte mimics, decorated with ligands that target leukocyte adhesion molecules (LAMs) and facilitate adhesion to diseased endothelium. VTCs require different design considerations than other targeted particle therapies; adhesion of VTCs in regions with dynamic blood flow requires multiple ligandâ receptor (LR) pairs that provide particle adhesion and disease specificity. Despite the ultimate goal of leukocyte mimicry, the specificity of multiple LAMâ targeted VTCs remains poorly understood, especially in physiological environments. Here, we investigate particle binding to an inflamed mesentery via intravital microscopy using a series of particles with wellâ controlled ligand properties. We find that the total number of sites of a single ligand can drive particle adhesion to the endothelium, however, combining ligands that target multiple LR pairs provides a more effective approach. Combining sites of sialyl Lewis A (sLeA) and antiâ intercellular adhesion moleculeâ 1 (aICAM), two adhesive molecules, resulted in â ¼3â 7â fold increase of adherent particles at the endothelium over singleâ ligand particles. At a constant total ligand density, a particle with a ratio of 75% sLeA: 25% aICAM resulted in more than 3â fold increase over all over other ligand ratios tested in our in vivo model. Combined with in vivo and in silico data, we find the best dualâ ligand design of a particle is heavily dependent on the surface expression of the endothelial cells, producing superior adhesion with more particle ligand for the lesserâ expressed receptor. These results establish the importance of considering LRâ kinetics in intelligent VTC ligand design for future therapeutics.
dc.publisherWiley Periodicals, Inc.
dc.subject.othervascularâ targeted carrier
dc.subject.otherleukomimietics
dc.subject.otherligandâ receptor pair
dc.subject.otherintravital microscopy
dc.subject.otherdualâ targeted particle
dc.subject.otherparticle adhesion
dc.titleEvaluation of receptorâ ligand mechanisms of dualâ targeted particles to an inflamed endothelium
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiomedical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133573/1/btm210008-sup-0007-suppinfo07.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133573/2/btm210008_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133573/3/btm210008.pdf
dc.identifier.doi10.1002/btm2.10008
dc.identifier.sourceBioengineering & Translational Medicine
dc.identifier.citedreferenceOnyskiw PJ, Eniolaâ adefeso O. Effect of PEGylation on ligandâ based targeting of drug carriers to the vascular wall in blood flow. Langmuir. 2013; 29: 11127 â 11134.
dc.identifier.citedreferenceBeauharnois ME, Lindquist KC, Marathe D, etal. Affinity and kinetics of sialyl Lewisâ X and Coreâ 2 based oligosaccharides binding to Lâ and Pâ selectin. Biochemistry. 2005; 44 ( 27 ): 9507 â 9519. doi: 10.1021/bi0507130.
dc.identifier.citedreferenceEniola AO, Willcox PJ, Hammer DA. Interplay between rolling and firm adhesion elucidated with a cellâ free system engineered with two distinct receptorâ ligand pairs. Biophys J. 2003; 85 ( 4 ): 2720 â 2731. doi: 10.1016/S0006-3495(03)74695-5.
dc.identifier.citedreferenceBurns AR, Bowden RA, MacDonell SD, etal. Analysis of tight junctions during neutrophil transendothelial migration. J Cell Sci. 2000; 113 ( pt 1 ): 45 â 57.
dc.identifier.citedreferenceCharoenphol P, Onyskiw PJ, Carrascoâ Teja M, Eniolaâ Adefeso O. Particleâ cell dynamics in human blood flow: implications for vascularâ targeted drug delivery. J Biomech. 2012; 45 ( 16 ): 2822 â 2828. doi: 10.1016/j.jbiomech.2012.08.035.
dc.identifier.citedreferenceDucusin RJT, Sarashina T, Uzuka Y, Tanabe S, Ohtani M. Phagocytic response of bovine polymorphonuclear leukocytes to different incubation conditions and following exposure to some effectors of phagocytosis and different anticoagulants in vitro. Can J Vet Res. 2001; 65 ( 1 ): 38 â 44.
dc.identifier.citedreferencePapaioannou TG, Stefanadis C. Vascular wall shear stress: basic principles and methods. Hellenic J Cardiol. 2005; 46 ( 1 ): 9 â 15. doi: 15807389.
dc.identifier.citedreferenceLipowsky HH, Usami S, Chien S. In vivo measurements of â apparent viscosityâ and microvessel hematocrit in the mesentery of the cat. Microvasc Res. 1980; 19 ( 3 ): 297 â 319. doi: 10.1016/0026-2862(80)90050-3.
dc.identifier.citedreferenceWang Y, Reheman A, Spring CM, etal. Plasma fibronectin supports hemostasis and regulates thrombosis. J Clin Invest. 2014; 124 ( 10 ): 4281 â 4293. doi: 10.1172/JCI74630.
dc.identifier.citedreferenceReheman A, Gross P, Yang H, etal. Vitronectin stabilizes thrombi and vessel occlusion but plays a dual role in platelet aggregation. J Thromb Haemost. 2005; 3 ( 5 ): 875 â 883. doi: 10.1111/j.1538-7836.2005.01217.x.
dc.identifier.citedreferenceTan J, Wang S, Yang J, Liu Y. Coupled particulate and continuum model for nanoparticle targeted delivery. Comput Struct. 2013; 122: 128 â 134. doi: 10.1016/j.compstruc.2012.12.019.
dc.identifier.citedreferenceChang KC, Hammer DA. Adhesive dynamics simulations of sialylâ Lewis(x)/Eâ selectinâ mediated rolling in a cellâ free system. Biophys J. 2000; 79 ( 4 ): 1891 â 1902. doi: 10.1016/S0006-3495(00)76439-3.
dc.identifier.citedreferenceFakhari A, Baoum A, Siahaan TJ, Le KB, Berkland C. Controlling ligand surface density optimizes nanoparticle binding to ICAM1. J Pharm Sci. 2011; 100 ( 3 ): 1045 â 1056. doi: 10.1002/jps.22342.
dc.identifier.citedreferenceGu F, Zhang L, Teply BA, etal. Precise engineering of targeted nanoparticles by using selfâ assembled biointegrated block copolymers. Proc Natl Acad Sci U S A. 2008; 105 ( 7 ): 2586 â 2591. doi: 10.1073/pnas.0711714105.
dc.identifier.citedreferenceLamberti G, Tang Y, Prabhakarpandian B, etal. Adhesive interaction of functionalized particles and endothelium in idealized microvascular networks. Microvasc Res. 2013; 89: 107 â 114. doi: 10.1016/j.mvr.2013.03.007.
dc.identifier.citedreferenceLey K, Allietta M, Bullard DC, Morgan S. Importance of Eâ selectin for firm leukocyte adhesion in vivo. Circ Res. 1998; 83 ( 3 ): 287 â 294. doi: 10.1161/01.RES.83.3.287.
dc.identifier.citedreferenceSimone E, Ding BS, Muzykantov V. Targeted delivery of therapeutics to endothelium. Cell Tissue Res. 2009; 335 ( 1 ): 283 â 300. doi: 10.1007/s00441-008-0676-7.
dc.identifier.citedreferenceMayadas TN, Johnson RC, Rayburn H, Hynes RO, Wagner DD. Leukocyte rolling and extravasation are severely compromised in P selectinâ deficient mice. Cell. 1993; 74 ( 3 ): 541 â 554. doi: 10.1016/0092-8674(93)80055-J.
dc.identifier.citedreferenceRobinson SD, Frenette PS, Rayburn H, etal. Multiple, targeted deficiencies in selectins reveal a predominant role for Pâ selectin in leukocyte recruitment. Proc Natl Acad Sci U S A. 1999; 96 ( 20 ): 11452 â 11457. doi: 10.1073/pnas.96.20.11452.
dc.identifier.citedreferenceForeman KE, Vaporciyan AA, Bonish BK, etal. C5aâ induced expression of Pâ selectin in endothelial cells. J Clin Invest. 1994; 94 ( 3 ): 1147 â 1155. doi: 10.1172/JCI117430.
dc.identifier.citedreferenceKansas G. Selectins and their ligands: current concepts and controversies. Blood. 1996; 88 ( 9 ): 3259 â 3287.
dc.identifier.citedreferenceLangley RR, Russell J, Eppihimer MJ, etal. Quantification of murine endothelial cell adhesion molecules in solid tumors. Am J Physiol. 1999; 277 ( 28 ): 1156 â 1166.
dc.identifier.citedreferenceEniola AO, Hammer DA. Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes II: effect of degradation on targeting activity. Biomaterials. 2005; 26 ( 6 ): 661 â 670. doi: 10.1016/j.biomaterials.2004.03.003.
dc.identifier.citedreferenceFish MB, Thompson AJ, Fromen CA, Eniolaâ Adefeso O. Emergence and utility of nonâ spherical particles in biomedicine. Ind Eng Chem Res. 2015; 54: 4043 â 4059. doi: 10.1021/ie504452j.
dc.identifier.citedreferenceTorchilin VP. Multifunctional nanocarriers. Adv Drug Deliv Rev. 2012; 64: 302 â 315. doi: 10.1016/j.addr.2012.09.031.
dc.identifier.citedreferenceBrannonâ Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev. 2012; 6:206 â 212. doi: 10.1016/j.addr.2012.09.033.
dc.identifier.citedreferenceAlbanese A, Tang PS, Chan WCW. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu Rev Biomed Eng. 2012; 14: 1 â 16. doi: 10.1146/annurev-bioeng-071811-150124.
dc.identifier.citedreferenceHoward M, Zern BJ, Anselmo AC, Shuvaev VV, Mitragotri S, Muzykantov V. Vascular targeting of nanocarriers: perplexing aspects of the seemingly straightforward paradigm. ACS Nano. 2014; 8 ( 5 ): 4100 â 4132. doi: 10.1021/nn500136z.
dc.identifier.citedreferenceCheng Z, Al Zaki A, Hui JZ, Muzykantov VR, Tsourkas A. Multifunctional nanoparticles: cost versus benefit of adding targeting and imaging capabilities. Science. 2012; 338 ( 6109 ): 903 â 910. doi: 10.1126/science.1226338.
dc.identifier.citedreferenceWang J, Tian S, Petros RA, Napier ME, Desimone JM. The complex role of multivalency in nanoparticles targeting the transferrin receptor for cancer therapies. J Am Chem Soc. 2010; 132 ( 32 ): 11306 â 11313. doi: 10.1021/ja1043177.
dc.identifier.citedreferenceWang X, Li S, Shi Y, etal. The development of siteâ specific drug delivery nanocarriers based on receptor mediation. J Control Release. 2014; 193: 139 â 153. doi: 10.1016/j.jconrel.2014.05.028.
dc.identifier.citedreferenceLey K, Laudanna C, Cybulsky MI, Nourshargh S. Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nat Rev Immunol. 2007; 7 ( 9 ): 678 â 689. doi: 10.1038/nri2156.
dc.identifier.citedreferenceMulivor AW, Lipowsky HH. Role of glycocalyx in leukocyteâ endothelial cell adhesion. Am J Physiol Heart Circ Physiol. 2002; 283 ( 4 ): H1282 â H1291. doi: 10.1152/ajpheart.00117.2002.
dc.identifier.citedreferenceSchmidt S, Moser M, Sperandio M. The molecular basis of leukocyte recruitment and its deficiencies. Mol Immunol. 2013; 55 ( 1 ): 49 â 58. doi: 10.1016/j.molimm.2012.11.006.
dc.identifier.citedreferenceWickline SA, Neubauer AM, Winter PM, Caruthers SD, Lanza GM. Molecular imaging and therapy of atherosclerosis with targeted nanoparticles. J Magn Reson Imaging. 2007; 25: 667 â 680. doi: 10.1002/jmri.20866.
dc.identifier.citedreferenceWinter PM, Morawski AM, Caruthers SD, etal. Molecular imaging of angiogenesis in earlyâ stage atherosclerosis with αvβ3â integrinâ targeted nanoparticles. Circulation. 2003; 108: 2270 â 2274. doi: 10.1161/01.CIR.0000093185.16083.95.
dc.identifier.citedreferenceNeri D, Bicknell R. Tumour vascular targeting. Nat Rev Cancer. 2005; 5 ( 6 ): 436 â 446. doi: 10.1038/nrc1627.
dc.identifier.citedreferenceMuro S, Garnacho C, Champion JA, etal. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM1â targeted carriers. Mol Ther. 2008; 16 ( 8 ): 1450 â 1458. doi: 10.1038/mt.2008.127.
dc.identifier.citedreferenceGarnacho C, Albelda SM, Muzykantov VR, Muro S. Differential intraâ endothelial delivery of polymer nanocarriers targeted to distinct PECAMâ 1 epitopes. J Control Release. 2008; 130 ( 3 ): 226 â 233. doi: 10.1016/j.jconrel.2008.06.007.
dc.identifier.citedreferenceHossain SS, Zhang Y, Liang X, Hussain F, Ferrari M, Decuzzi P. In silico vascular modeling for personalized nanoparticle delivery. Nanomedicine. 2013; 8: 343 â 357.
dc.identifier.citedreferencePapademetriou I, Tsinas Z, Hsu J, Muro S. Combinationâ targeting to multiple endothelial cell adhesion molecules modulates binding, endocytosis, and in vivo biodistribution of drug nanocarriers and their therapeutic cargoes. J Control Release. 2014; 188: 87 â 98. doi: 10.1016/j.jconrel.2014.06.008.
dc.identifier.citedreferenceModeryâ Pawlowski CL, Sen Gupta A. Heteromultivalent ligandâ decoration for actively targeted nanomedicine. Biomaterials. 2014; 35 ( 9 ): 2568 â 2579. doi: 10.1016/j.biomaterials.2013.12.047.
dc.identifier.citedreferenceDoolittle E, Peiris PM, Doron G, etal. Spatiotemporal targeting of a dualâ ligand nanoparticle to cancer metastasis. ACS Nano. 2015; 9 ( 8 ): 8012 â 8021.
dc.identifier.citedreferenceGunawan RC, Almeda D, Auguste DT. Complementary targeting of liposomes to ILâ 1α and TNFâ α activated endothelial cells via the transient expression of VCAM1 and Eâ selectin. Biomaterials. 2011; 32 ( 36 ): 9848 â 9853. doi: 10.1016/j.biomaterials.2011.08.093.
dc.identifier.citedreferenceMcAteer MA, Schneider JE, Ali ZA, etal. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dualâ targeted microparticles of iron oxide. Arterioscler Thromb Vasc Biol. 2008; 28 ( 1 ): 77 â 83. doi: 10.1161/ATVBAHA.107.145466.
dc.identifier.citedreferenceSun D, Nakao S, Xie F, Zandi S, Schering A, Hafeziâ Moghadam A. Superior sensitivity of novel molecular imaging probe: simultaneously targeting two types of endothelial injury markers. FASEB J. 2010; 24 ( 5 ): 1532 â 1540. doi: 10.1096/fj.09-148981.
dc.identifier.citedreferenceGunawan RC, Auguste DT. The role of antibody synergy and membrane fluidity in the vascular targeting of immunoliposomes. Biomaterials. 2010; 31 ( 5 ): 900 â 907. doi: 10.1016/j.biomaterials.2009.09.107.
dc.identifier.citedreferenceRobbins GP, Saunders RL, Haun JB, Rawson J, Therien MJ, Hammer DA. Tunable leukoâ polymersomes that adhere specifically to inflammatory markers. Langmuir. 2010; 26 ( 17 ): 14089 â 14096. doi: 10.1021/la1017032.
dc.identifier.citedreferenceHammer DA, Apte SM. Simulation of cell rolling and adhesion on surfaces in shear flow: general results and analysis of selectinâ mediated neutrophil adhesion. Biophys J. 1992; 63 ( 1 ): 35 â 57. doi: 10.1016/S0006-3495(92)81577-1.
dc.identifier.citedreferenceKim MJ, Rhee K. Computational analysis of nanoparticle adhesion to endothelium: effects of kinetic rate constants and wall shear rates. Med Biol Eng Comput. 2011; 49 ( 7 ): 733 â 741. doi: 10.1007/s11517-011-0735-1.
dc.identifier.citedreferenceEniola AO, Hammer DA. In vitro characterization of leukocyte mimetic for targeting therapeutics to the endothelium using two receptors. Biomaterials. 2005; 26 ( 34 ): 7136 â 7144. doi: 10.1016/j.biomaterials.2005.05.005.
dc.identifier.citedreferenceHaun JB, Robbins GP, Hammer DA. Engineering therapeutic nanocarriers with optimal adhesion for targeting. J Adhes. 2010; 86 ( 1 ): 131 â 159. doi: 10.1080/00218460903510414.
dc.identifier.citedreferenceHaun JB, Hammer DA. Quantifying nanoparticle adhesion mediated by specific molecular interactions. Langmuir. 2008; 24 ( 16 ): 8821 â 8832. doi: 10.1021/la8005844.
dc.identifier.citedreferenceHuang RB, Eniolaâ Adefeso O. Shear stress modulation of ILâ 1â induced Eâ selectin expression in human endothelial cells. PLoS One. 2012; 7 ( 2 ): 1 â 11. doi: 10.1371/journal.pone.0031874.
dc.identifier.citedreferenceCharoenphol P, Mocherla S, Bouis D, Namdee K, Pinsky DJ, Eniolaâ Adefeso O. Targeting therapeutics to the vascular wall in atherosclerosisâ carrier size matters. Atherosclerosis. 2011; 217: 364 â 370. doi: 10.1016/j.atherosclerosis.2011.04.016.
dc.identifier.citedreferenceCharoenphol P, Huang RB, Eniolaâ Adefeso O. Potential role of size and hemodynamics in the efficacy of vascularâ targeted spherical drug carriers. Biomaterials. 2010; 31: 1392 â 1402. doi: 10.1016/j.biomaterials.2009.11.007.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.