A data‐driven approach to conditional screening of high‐dimensional variables
dc.contributor.author | Hong, Hyokyoung G. | |
dc.contributor.author | Wang, Lan | |
dc.contributor.author | He, Xuming | |
dc.date.accessioned | 2016-09-17T23:54:16Z | |
dc.date.available | 2017-04-04T14:50:43Z | en |
dc.date.issued | 2016 | |
dc.identifier.citation | Hong, Hyokyoung G.; Wang, Lan; He, Xuming (2016). "A data‐driven approach to conditional screening of high‐dimensional variables." Stat 5(1): 200-212. | |
dc.identifier.issn | 2049-1573 | |
dc.identifier.issn | 2049-1573 | |
dc.identifier.uri | https://hdl.handle.net/2027.42/133576 | |
dc.publisher | Wiley Periodicals, Inc. | |
dc.publisher | Curran Associates, Inc. | |
dc.subject.other | conditional screening | |
dc.subject.other | false negative | |
dc.subject.other | feature screening | |
dc.subject.other | high dimension | |
dc.subject.other | sparse principal component analysis | |
dc.subject.other | sure screening property | |
dc.title | A data‐driven approach to conditional screening of high‐dimensional variables | |
dc.type | Article | en_US |
dc.rights.robots | IndexNoFollow | |
dc.subject.hlbsecondlevel | Mathematics | |
dc.subject.hlbtoplevel | Science | |
dc.description.peerreviewed | Peer Reviewed | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/133576/1/sta4115.pdf | |
dc.description.bitstreamurl | http://deepblue.lib.umich.edu/bitstream/2027.42/133576/2/sta4115_am.pdf | |
dc.identifier.doi | 10.1002/sta4.115 | |
dc.identifier.source | Stat | |
dc.identifier.citedreference | Li, R, Zhong, W & Zhu, L ( 2012 ), ‘ Feature screening via distance correlation learning ’, Journal of the American Statistical Association, 107, 1129 – 1139. | |
dc.identifier.citedreference | Zou, H, Hastie, T & Tibshirani, R ( 2006 ), ‘ Sparse principal component analysis ’, Journal of the American Statistical Association, 15, 265 – 286. | |
dc.identifier.citedreference | Zhu, L, Li, L, Li, R & Zhu, LX ( 2011 ), ‘ Model‐free feature screening for ultrahigh dimensional data ’, Journal of the American Statistical Association, 106, 1464 – 1475. | |
dc.identifier.citedreference | Witten, D, Tibshirani, R & Hastie, T ( 2009 ), ‘ A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis ’, Journal of Multivariate Analysis, 10, 515 – 534. | |
dc.identifier.citedreference | Wang, X & Leng, C ( 2016 ), ‘ High‐dimensional ordinary least‐squares projector for screening variables ’, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 78, 589 – 611. | |
dc.identifier.citedreference | Wang, H ( 2009 ), ‘ Forward regression for ultra‐high dimensional variable screening ’, Journal of the American Statistical Association, 104, 1512 – 1524. | |
dc.identifier.citedreference | Vu, VQ & Lei, J ( 2013 ), ‘ Minimax sparse principal subspace estimation in high dimensions ’, Annals of Statistics, 41, 2905 – 2947. | |
dc.identifier.citedreference | Vu, VQ, Cho, J, Lei, J, Rohe, K ( 2013 ), ‘ Fantope projection and selection: a near‐optimal convex relaxation of sparse PCA ’, In Advances in Neural Information Processing Systems, Curran Associates, Inc., 2670 – 2678. | |
dc.identifier.citedreference | Ma, Z ( 2013 ), ‘ Sparse principal component analysis and iterative thresholding ’, Annals of Statistics, 41, 772 – 801. | |
dc.identifier.citedreference | Liu, J, Li, R & Wu, R ( 2014 ), ‘ Feature selection for varying coefficient models with ultrahigh dimensional covariates ’, Journal of the American Statistical Association, 109, 266 – 274. | |
dc.identifier.citedreference | Mai, Q & Zou, H ( 2013 ), ‘ The Kolmogorov filter for variable screening in high‐dimensional binary classification ’, Biometrika, 100, 229 – 234. | |
dc.identifier.citedreference | She, Y ( 2014 ). Selectable factor extraction in high dimensions arXiv preprint arXiv:1403.6212. | |
dc.identifier.citedreference | Shao, X & Zhang, J ( 2014 ), ‘ Martingale difference correlation and its use in high dimensional variable screening ’, Journal of the American Statistical Association, 109, 1302 – 1318. | |
dc.identifier.citedreference | Ni, L ( 2011 ), ‘ Principal component regression revisited ’, Statistica Sinica, 21, 741 – 747. | |
dc.identifier.citedreference | Shen, H & Huang, J ( 2008 ), ‘ Sparse principal component analysis via regularized low rank matrix approximation ’, Journal of Multivariate Analysis, 99, 1015 – 1034. | |
dc.identifier.citedreference | Artemiou, A & Li, B ( 2009 ), ‘ On principal components and regression: a statistical explanation of a natural phenomenon ’, Statistica Sinica, 19, 1557 – 1566. | |
dc.identifier.citedreference | Artemiou, A & Li, B ( 2013 ), ‘ Predictive power of principal components for single‐index model and sufficient dimension reduction ’, Journal of Multivariate Analysis, 119, 176 – 184. | |
dc.identifier.citedreference | Barut, E, Fan, J & Verhasselt, A ( 2016 ), ‘ Conditional sure independence screening ’, Journal of the American Statistical Association. DOI: 10.1080/01621459.2015.1092974. | |
dc.identifier.citedreference | Bühlmann, P, Kalisch, M & Maathuis, MH ( 2010 ), ‘ Variable selection in high‐dimensional linear models: partially faithful distributions and the PC‐simple algorithm ’, Biometrika, 97, 261 – 278. | |
dc.identifier.citedreference | Dramiński, M, Rada‐Iglesias, A, Enroth, S, Wadelius, C, Koronacki, J & Komorowski, J ( 2008 ), ‘ Monte Carlo feature selection for supervised classification ’, Bioinformatics, 24, 110 – 117. | |
dc.identifier.citedreference | Fan, J & Lv, J ( 2008 ), ‘ Sure independence screening for ultra‐high dimensional feature space (with discussion) ’, Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70, 849 – 911. | |
dc.identifier.citedreference | Fan, J, Feng, Y & Song, R ( 2011 ), ‘ Nonparametric independence screening in sparse ultra‐high dimensional additive models ’, Journal of the American Statistical Association, 116, 544 – 557. | |
dc.identifier.citedreference | Fan, J, Samworth, R & Wu, Y ( 2009 ), ‘ Ultrahigh dimensional feature selection: beyond the linear model ’, Journal of Machine Learning Research, 10, 2013 – 2038. | |
dc.identifier.citedreference | Fan, J & Song, R ( 2010 ), ‘ Sure independence screening in generalized linear models with NP‐dimensionality ’, Annals of Statistics, 38, 3567 – 3604. | |
dc.identifier.citedreference | Golub, T, Slonim, D, Tamayo, P, Huard, C, Gaasenbeek, M, Mesirov, J, Coller, H, Loh, M, Downing, J, Caligiuri, M, Bloomfield, C & Lander, E ( 1999 ), ‘ Molecular classification of cancer: class discovery and class prediction by gene expression monitoring ’, Science, 286 ( 5439 ): 531 – 537. | |
dc.identifier.citedreference | Guan, Z & Zhao, H ( 2005 ), ‘ A semiparametric approach for marker geneselection based on gene expression data ’, Bioinformatics, 21, 529 – 536. | |
dc.identifier.citedreference | Guyon, I & Elisseeff, A ( 2003 ), ‘ An introduction to variable and feature selection ’, Journal of Machine Learning Research, 3, 1157 – 1182. | |
dc.identifier.citedreference | Hall, P & Miller, H ( 2009 ), ‘ Using the bootstrap to quantify the authority of an empirical ranking ’, Annals of Statistics, 37, 3929 – 3959. | |
dc.identifier.citedreference | He, X, Wang, L & Hong, HG ( 2013 ), ‘ Quantile‐adaptive model‐free variable screening for high‐dimensional heterogeneous data ’, Annals of Statistics, 41, 342 – 369. | |
dc.identifier.citedreference | Johnstone, IM & Lu, AY ( 2009 ), ‘ On consistency and sparsity for principal components analysis in high dimensions ’, Journal of the American Statistical Association, 104, 682 – 693. | |
dc.identifier.citedreference | Jolliffe, IT, Trendafilov, NT & Uddin, M ( 2003 ), ‘ A modified principal component technique based on the lasso ’, Journal of the American Statistical Association, 12, 531 – 547. | |
dc.identifier.citedreference | Lei, J & Vu, VQ ( 2015 ), ‘ Sparsistency and agnostic inference in sparse PCA ’, Annals of Statistics, 43, 299 – 322. | |
dc.identifier.citedreference | Li, B ( 2007 ), ‘ Comment on Cook ’, Statistica Sinica, 22, 32 – 35. | |
dc.identifier.citedreference | Li, G, Peng, H, Zhang, J & Zhu, L ( 2012 ), ‘ Robust rank correlation based screening ’, Annals of Statistics, 40, 1846 – 1877. | |
dc.owningcollname | Interdisciplinary and Peer-Reviewed |
Files in this item
Remediation of Harmful Language
The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.
Accessibility
If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.