Show simple item record

Naturalistic Sentence Comprehension in the Brain

dc.contributor.authorBrennan, Jonathan
dc.date.accessioned2016-09-17T23:54:26Z
dc.date.available2017-10-05T14:33:48Zen
dc.date.issued2016-07
dc.identifier.citationBrennan, Jonathan (2016). "Naturalistic Sentence Comprehension in the Brain." Language and Linguistics Compass 10(7): 299-313.
dc.identifier.issn1749-818X
dc.identifier.issn1749-818X
dc.identifier.urihttps://hdl.handle.net/2027.42/133583
dc.description.abstractThe cognitive neuroscience of language relies largely on controlled experiments that are different from the everyday situations in which we use language. This review describes an approach that studies specific aspects of sentence comprehension in the brain using data collected while participants perform an everyday task, such as listening to a story. The approach uses ‘neuro‐computational’ models that are based on linguistic and psycholinguistic theories. These models quantify how a specific computation, such as identifying a syntactic constituent, might be carried out by a neural circuit word‐by‐word. Model predictions are tested for their statistical fit with measured brain data. The paper discusses three applications of this approach: (i) to probe the location and timing of linguistic processing in the brain without requiring unnatural tasks and stimuli, (ii) to test theoretical hypotheses by comparing the fits of different models to naturalistic data, and (iii) to study neural mechanisms for language processing in populations that are poorly served by traditional methods.
dc.publisherFL
dc.publisherWiley Periodicals, Inc.
dc.titleNaturalistic Sentence Comprehension in the Brain
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelLinguistics
dc.subject.hlbtoplevelHumanities
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133583/1/lnc312198.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133583/2/lnc312198_am.pdf
dc.identifier.doi10.1111/lnc3.12198
dc.identifier.sourceLanguage and Linguistics Compass
dc.identifier.citedreferenceRoark, B., Bachrach, A., Cardenas, C., & Pallier, C. ( 2009 ). Deriving lexical and syntactic expectation-based measures for psycholinguistic modeling via incremental top‐down parsing. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (EMNLP) pp. 324 – 333.
dc.identifier.citedreferenceStabler, E. ( 1997 ). Derivational minimalism. In Retoré, editor, Logical aspects of computational linguistics, 68 – 95. Springer.
dc.identifier.citedreferenceStephens, G. J., Silbert, L. J., and Hasson, U. ( 2010 ). Speaker–listener neural coupling underlies successful communication. Proceedings of the National Academy of Sciences USA, 107 ( 32 ): 14425 – 30.
dc.identifier.citedreferenceStowe, L. A., Broere, C. A., Paans, A. M., Wijers, A. A., Mulder, G., Vaalburg, W., & Zwarts, F. ( 1998 ). Localizing components of a complex task: Sentence processing and working memory. NeuroReport, 9 ( 13 ), 2995 – 2999.
dc.identifier.citedreferenceTager‐Flusberg, H., and Caronna, E. ( 2007 ). Language disorders: autism and other pervasive developmental disorders. Pediatric Clinics of North America, 54 ( 3 ): 469 – 81.
dc.identifier.citedreferenceVan Petten, C., and Luka, B. J. ( 2012 ). Prediction during language comprehension: benefits, costs, and ERP components. International Journal of Psychophysiology, 83 ( 2 ): 176 – 90.
dc.identifier.citedreferenceWehbe, L., Murphy, B., Talukdar, P., Fyshe, A., Ramdas, A., and Mitchell, T. ( 2014 ). Simultaneously uncovering the patterns of brain regions involved in different story reading subprocesses. PLoS One, 9 ( 11 ): e112575.
dc.identifier.citedreferenceWhitney, C., Huber, W., Klann, J., Weis, S., Krach, S., and Kircher, T. ( 2009 ). Neural correlates of narrative shifts during auditory story comprehension. NeuroImage, 47 ( 1 ): 360 – 6.
dc.identifier.citedreferenceWillems, R. ( 2013 ). Can literary studies contribute to cognitive neuroscience? Journal of LIterary Semantics, 42 ( 2 ): 217 – 222.
dc.identifier.citedreferenceWillems, R. M., editor ( 2015 ). Cognitive neuroscience of natural language use. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceWillems, R. M., Frank, S. L., Nijhof, A. D., Hagoort, P., and van den Bosch, A. ( 2015 ). Prediction during natural language comprehension. Cerebral Cortex. doi: 10.1093/cercor/bhv075.
dc.identifier.citedreferenceWilson, S. M., Molnar‐Szakacs, I., and Iacoboni, M. ( 2008 ). Beyond superior temporal cortex: intersubject correlations in narrative speech comprehension. Cerebral Cortex, 18 ( 1 ): 230 – 242.
dc.identifier.citedreferenceXu, J., Kemeny, S., Park, G., Frattali, C., and Braun, A. ( 2005 ). Language in context: emergent features of word, sentence, and narrative comprehension. NeuroImage, 25 ( 3 ): 1002 – 1015.
dc.identifier.citedreferenceYarkoni, T., Speer, N. K., Balota, D. A., McAvoy, M. P., and Zacks, J. M. ( 2008 ). Pictures of a thousand words: investigating the neural mechanisms of reading with extremely rapid event‐related fMRI. NeuroImage, 42 ( 2 ): 973 – 87.
dc.identifier.citedreferenceBachrach, A. ( 2008 ). Imaging neural correlates of syntactic complexity in a naturalistic context. PhD thesis, Massachusetts Institute of Technology.
dc.identifier.citedreferenceBornkessel‐Schlesewsky, I., Schlesewsky, M., Small, S. L., & Rauschecker, J. P. ( 2015 ). Neurobiological roots of language in primate audition: common computational properties. Trends in Cognitive Sciences, 19 ( 3 ), 142 – 50.
dc.identifier.citedreferenceBrennan, J., Cantor, M., and Hale, J. T. (In prep). EEG indices of syntactic expectation reflect both linear and hierarchical dependencies.
dc.identifier.citedreferenceBrennan, J., Cantor, M., Eby, R., and Hale, J. T. ( 2016 ). EEG correlates of syntactic expectation reflect both word‐to‐word and hierarchical dependencies. Talk presented at the 2016 CUNY Conference on Human Sentence Processing, Gainesville FL.
dc.identifier.citedreferenceBrennan, J., Nir, Y., Hasson, U., Malach, R., Heeger, D. J., and Pylkk änen, L. ( 2012 ). Syntactic structure building in the anterior temporal lobe during natural story listening. Brain and Language, 120: 163 – 173.
dc.identifier.citedreferenceBrennan, J. and Pylkkänen, L. ( 2012 ). The time‐course and spatial distribution of brain activity associated with sentence processing. NeuroImage, 60: 1139 – 1148.
dc.identifier.citedreferenceBrennan, J. and Pylkkänen, L. (Submitted). MEG evidence for incremental sentence composition in the anterior temporal lobe.
dc.identifier.citedreferenceBrennan, J., Stabler, E. P., Van Wagenen, S. E., Luh, W.‐M., and Hale, J. T. (In press). Abstract linguistic structure correlates with left temporal activity during naturalistic comprehension. Brain and Language.
dc.identifier.citedreferenceBrock, J., Norbury, C., Einav, S., and Nation, K. ( 2008 ). Do individuals with autism process words in context? Evidence from language‐mediated eye‐movements. Cognition, 108 ( 3 ): 896 – 904.
dc.identifier.citedreferenceBrouwer, H. ( 2014 ). The electrophysiology of language comprehension: A neurocomputational model. PhD thesis, University of Groningen.
dc.identifier.citedreferenceChow, W.‐Y. and Phillips, C. ( 2013 ). No semantic illusion in the ‘Semantic P600’ phenomenon: ERP evidence from Mandarin Chinese. Brain Research, 1506: 76 – 93.
dc.identifier.citedreferenceDeLong, K. A., Urbach, T. P., and Kutas, M. ( 2005 ). Probabilistic word pre‐activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8 ( 8 ): 1117 – 1121.
dc.identifier.citedreferenceDikker, S. and Pylkkänen, L. ( 2013 ). Predicting language: MEG evidence for lexical preactivation. Brain and Language, 127: 55 – 64.
dc.identifier.citedreferenceDikker, S., Rabagliati, H., Farmer, T., and Pylkkänen, L. ( 2010 ). Early occipital sensitivity to syntactic category is based on form typicality. Psychological Science, 21 ( 5 ): 629 – 634.
dc.identifier.citedreferenceEgidi, G. and Caramazza, A. ( 2013 ). Cortical systems for local and global integration in discourse comprehension. NeuroImage, 71: 59 – 74.
dc.identifier.citedreferenceEmbick, D. and Poeppel, D. ( 2015 ). Towards a computational(ist) neurobiology of language: correlational, integrated, and explanatory neurolinguistics. Language, Cognition, and Neuroscience, 30 ( 4 ): 357 – 366.
dc.identifier.citedreferenceFedermeier, K. D. ( 2007 ). Thinking ahead: the role and roots of prediction in language comprehension. Psychophysiology, 44 ( 4 ): 491 – 505.
dc.identifier.citedreferenceFerreira, F., Bailey, K. G. D., and Ferraro, V. ( 2002 ). Good‐enough representations in language comprehension. Current Directions in Psychological Science, 11 ( 1 ): 11 – 15.
dc.identifier.citedreferenceFerreira, F., and Patson, N. ( 2007 ). The ‘Good Enough’ approach to language comprehension. Language and Linguistics Compass, 1 ( 1–2 ): 71 – 83.
dc.identifier.citedreferenceFossum, V. and Levy, R. ( 2012 ). Sequential vs. hierarchical syntactic models of human incremental sentence processing. In Proceedings of the 3rd Annual Workshop on Cognitive Modeling and Computational Linguistics. 61 – 69.
dc.identifier.citedreferenceFrank, S. L. and Bod, R. ( 2011 ). Insensitivity of the human sentence‐processing system to hierarchical structure. Psychological Science, 22 ( 6 ): 829 – 34.
dc.identifier.citedreferenceFrank, S. L., Otten, L. J., Galli, G., and Vigliocco, G. ( 2015 ). The ERP response to the amount of information conveyed by words in sentences. Brain and Language, 140 ( 0 ): 1 – 11.
dc.identifier.citedreferenceFriederici, A. D., and Gierhan, S. M. E. ( 2013 ). The language network. Current Opinions in Neurobiology, 23 ( 2 ): 250 – 4.
dc.identifier.citedreferenceFriederici, A. D., Pfeifer, E., and Hahne, A. ( 1993 ). Event‐related brain potentials during natural speech processing: effects of semantic, morphological and syntactic violations. Cognitive Brain Research, 1 ( 3 ): 183 – 192.
dc.identifier.citedreferenceGibson, E., Bergen, L., and Piantadosi, S. T. ( 2013 ). Rational integration of noisy evidence and prior semantic expectations in sentence interpretation. Proceedings of the National Academy of the Sciences USA, 110 ( 20 ): 8051 – 6.
dc.identifier.citedreferenceGouvea, A. C., Phillips, C., Kazanina, N., and Poeppel, D. ( 2010 ). The linguistic processes underlying the P600. Language and Cognitive Processes, 25 ( 2 ): 149 – 188.
dc.identifier.citedreferenceGroen, W. B., Zwiers, M. P., van der Gaag, R.‐J., and Buitelaar, J. K. ( 2008 ). The phenotype and neural correlates of language in autism: an integrative review. Neuroscience Biobehavioral Review, 32 ( 8 ): 1416 – 25.
dc.identifier.citedreferenceHagoort, P., Brown, C., and Groothusen, J. ( 1993 ). The syntactic positive shift (SPS) as an ERP measure of syntactic processing. Language and Cognitive Processes, 8 ( 4 ): 439 – 483.
dc.identifier.citedreferenceHagoort, P. and Indefrey, P. ( 2014 ). The neurobiology of language beyond single words. Annual Review of Neuroscience, 37: 347 – 62.
dc.identifier.citedreferenceHale, J. ( 2001 ). A probabilistic Earley parser as a psycholinguistic model. In North American Chapter of the Association for Computational Linguistics, 1 – 8. Association for Computational Linguistics Morristown, NJ, USA.
dc.identifier.citedreferenceHale, J. ( 2006 ). Uncertainty about the rest of the sentence. Cognitive Science, 30 ( 4 ): 643 – 672.
dc.identifier.citedreferenceHale, J. ( 2011 ). What a rational parser would do. Cognitive Science, 35 ( 3 ): 399 – 443.
dc.identifier.citedreferenceHale, J. ( 2014 ). Automaton theories of human sentence comprehension. CSLI Publications.
dc.identifier.citedreferenceHale, J. (In press). Information‐theoretical complexity metrics. Language and Linguistics Compass.
dc.identifier.citedreferenceHasson, U., Landesman, O., Knappmeyer, B., Vallines, I., Rubin, N., and Heeger, D. J. ( 2008 ). Neurocinematics: the neuroscience of film. Projections, 2 ( 1 ): 1 – 26.
dc.identifier.citedreferenceHauk, O., Davis, M. H., Ford, M., Pulvermuller, F., & Marslen‐Wilson, W. D. ( 2006 ). The time course of visual word recognition as revealed by linear regression analysis of ERP data. NeuroImage, 30 ( 4 ), 1383 – 1400.
dc.identifier.citedreferenceHenderson, J. M., Choi, W., Lowder, M. W., and Ferreira, F. ( 2016 ). Language structure in the brain: a fixation‐related fMRI study of syntactic surprisal in reading. NeuroImage.
dc.identifier.citedreferenceHumphries, C., Binder, J. R., Medler, D. A., and Liebenthal, E. ( 2006 ). Syntactic and semantic modulation of neural activity during auditory sentence comprehension. Journal of Cognitive Neuroscience, 18 ( 4 ): 665 – 679.
dc.identifier.citedreferenceHuth, A. G., de Heer, W. A., Griffiths, T. L., Theunissen, F. E., & Gallant, J. L. ( 2016 ). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature, 532 ( 7600 ), 453 – 458
dc.identifier.citedreferenceJacobs, A. M. ( 2015 ). Towards a neurocognitive poetics model of literary reading. In Willems, R. M., editor, Cognitive neuroscience of natural language use. Cambridge, UK: Cambridge University Press.
dc.identifier.citedreferenceKelley, E. ( 2011 ). Language in ASD. In Fein, D. A., editor, The neuropsychology of autism. Oxford: Oxford University Press.
dc.identifier.citedreferenceKemmerer, D. ( 2014 ). Cognitive neuroscience of language. New York, NY: Psychology Press.
dc.identifier.citedreferenceKim, A., and Osterhout, L. ( 2005 ). The independence of combinatory semantic processing: evidence from event‐related potentials. Journal of Memory and Language, 52: 205 – 225.
dc.identifier.citedreferenceKumar, S., and Penny, W. ( 2014 ). Estimating neural response functions from fMRI. Frontiers in Neuroinformatics, 8, 48.
dc.identifier.citedreferenceKurby, C. A., and Zacks, J. M. ( 2013 ). The activation of modality‐specific representations during discourse processing. Brain and Language, 126 ( 3 ): 338 – 49.
dc.identifier.citedreferenceLerner, Y., Honey, C. J., Katkov, M., and Hasson, U. ( 2014 ). Temporal scaling of neural responses to compressed and dilated natural speech. Journal of Neurophysiology, 111 ( 12 ): 2433 – 44.
dc.identifier.citedreferenceLewis, S., and Phillips, C. ( 2015 ). Aligning grammatical theories and language processing models. Journal of Psycholinguistic Research, 44 ( 1 ): 27 – 46.
dc.identifier.citedreferenceLombardo, M. V., Pierce, K., Eyler, L. T., Carter Barnes, C., Ahrens‐Barbeau, C., Solso, S., Campbell, K., and Courchesne, E. ( 2015 ). Different functional neural substrates for good and poor language outcome in Autism. Neuron, 86 ( 2 ): 567 – 77.
dc.identifier.citedreferenceMarcus, M., Marcinkiewicz, M., & Santorini, B. ( 1993 ). Building a large annotated corpus of English: The penn treebank. Computational linguistics, 19 ( 2 ), 313 – 330.
dc.identifier.citedreferenceMaris, E. and Oostenveld, R. ( 2007 ). Nonparametric statistical testing of EEG‐ and MEG‐data. Journal of Neuroscience Methods, 164 ( 1 ): 177 – 190.
dc.identifier.citedreferenceMazoyer, B. M., Tzourio, N., Frak, V., Syrota, A., Murayama, N., Levrier, O., Sala‐ mon, G., Dehaene, S., Cohen, L., and Mehler, J. ( 1993 ). The cortical representation of speech. Journal of Cognitive Neuroscience, 5 ( 4 ): 467 – 479.
dc.identifier.citedreferenceMolinaro, N., Barraza, P., and Carreiras, M. ( 2013 ). Long‐range neural synchronization supports fast and efficient reading: EEG correlates of processing expected words in sentences. NeuroImage, 72 ( 0 ): 120 – 132.
dc.identifier.citedreferenceNeville, H., Nicol, J. L., Barss, A., Forster, K. I., and Garrett, M. F. ( 1991 ). Syntactically based sentence processing classes: evidence from event‐related brain potentials. Journal of Cognitive Neuroscience, 3 ( 2 ): 151 – 165.
dc.identifier.citedreferencePijnacker, J., Geurts, B., van Lambalgen, M., Buitelaar, J., and Hagoort, P. ( 2010 ). Exceptions and anomalies: an ERP study on context sensitivity in autism. Neuropsychologia, 48 ( 10 ): 2940 – 51.
dc.identifier.citedreferencePoeppel, D. ( 2012 ). The maps problem and the mapping problem: two challenges for a cognitive neuroscience of speech and language. Cognitive Neuropsychology, 29 ( 1‐2 ): 34 – 55.
dc.identifier.citedreferencePoeppel, D. and Embick, D. ( 2005 ). Defining the relation between linguistics and neuroscience. In Cutler, A., editor, Twenty‐first century psycholinguistics: four cornerstones. Mahwah, NJ: Lawrence Erlbaum.
dc.identifier.citedreferencePylkkänen, L. ( 2016 ). Composition of complex meaning: interdisciplinary perspectives on the left anterior temporal lobe. In Hickok, G. and Small, S., editors, Neurobiology of language. Academic Press, London: Elsevier.
dc.identifier.citedreferenceRoberts, T. P. L., Cannon, K. M., Tavabi, K., Blaskey, L., Khan, S. Y., Monroe, J. F., Qasmieh, S., Levy, S. E., and Edgar, J. C. ( 2011 ). Auditory magnetic mismatch field latency: a biomarker for language impairment in Autism. Biological Psychiatry, 70 ( 3 ): 263 – 269.
dc.identifier.citedreferenceRogalsky, C., and Hickok, G. ( 2010 ). The role of Broca’s area in sentence comprehension. Journal of Cognitive Neuroscience, 23 ( 7 ): 1 – 17.
dc.identifier.citedreferenceSanford, A., and Sturt, P. ( 2002 ). Depth of processing in language comprehension: not noticing the evidence. Trends in Cognitive Sciences, 6 ( 9 ): 382.
dc.identifier.citedreferenceSilbert, L. J., Honey, C. J., Simony, E., Poeppel, D., and Hasson, U. ( 2014 ). Coupled neural systems underlie the production and comprehension of naturalistic narrative speech. Proceedings of the National Academy of Sciences USA, 111 ( 43 ): E4687 – 96.
dc.identifier.citedreferenceSkipper, J. I., Goldin‐Meadow, S., Nusbaum, H. C., and Small, S. L. ( 2009 ). Gestures orchestrate brain networks for language understanding. Current Biology, 19 ( 8 ): 661 – 7.
dc.identifier.citedreferenceSpeer, N. K., Reynolds, J. R., Swallow, K. M., and Zacks, J. M. ( 2009 ). Reading stories activates neural representations of visual and motor experiences. Psychological Science, 20 ( 8 ): 989 – 99.
dc.identifier.citedreferenceSportiche, D., Koopman, H., and Stabler, E. ( 2013 ). An introduction to syntactic analysis and theory. West Sussex: Wiley‐Blackwell.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.