Show simple item record

Activating KRAS mutations are characteristic of oncocytic sinonasal papilloma and associated sinonasal squamous cell carcinoma

dc.contributor.authorUdager, Aaron M
dc.contributor.authorMcHugh, Jonathan B
dc.contributor.authorBetz, Bryan L
dc.contributor.authorMontone, Kathleen T
dc.contributor.authorLivolsi, Virginia A
dc.contributor.authorSeethala, Raja R
dc.contributor.authorYakirevich, Evgeny
dc.contributor.authorIwenofu, O Hans
dc.contributor.authorPerez‐ordonez, Bayardo
dc.contributor.authorDuRoss, Kathleen E
dc.contributor.authorWeigelin, Helmut C
dc.contributor.authorLim, Megan S
dc.contributor.authorElenitoba‐johnson, Kojo Sj
dc.contributor.authorBrown, Noah A
dc.date.accessioned2016-09-17T23:54:28Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-08
dc.identifier.citationUdager, Aaron M; McHugh, Jonathan B; Betz, Bryan L; Montone, Kathleen T; Livolsi, Virginia A; Seethala, Raja R; Yakirevich, Evgeny; Iwenofu, O Hans; Perez‐ordonez, Bayardo ; DuRoss, Kathleen E; Weigelin, Helmut C; Lim, Megan S; Elenitoba‐johnson, Kojo Sj ; Brown, Noah A (2016). "Activating KRAS mutations are characteristic of oncocytic sinonasal papilloma and associated sinonasal squamous cell carcinoma." The Journal of Pathology 239(4): 394-398.
dc.identifier.issn0022-3417
dc.identifier.issn1096-9896
dc.identifier.urihttps://hdl.handle.net/2027.42/133586
dc.description.abstractOncocytic sinonasal papillomas (OSPs) are benign tumours of the sinonasal tract, a subset of which are associated with synchronous or metachronous sinonasal squamous cell carcinoma (SNSCC). Activating EGFR mutations were recently identified in nearly 90% of inverted sinonasal papillomas (ISPs) â a related tumour with distinct morphology. EGFR mutations were, however, not found in OSP, suggesting that different molecular alterations drive the oncogenesis of these tumours. In this study, tissue from 51 cases of OSP and five cases of OSPâ associated SNSCC was obtained retrospectively from six institutions. Tissue was also obtained from 50 cases of ISP, 22 cases of ISPâ associated SNSCC, ten cases of exophytic sinonasal papilloma (ESP), and 19 cases of SNSCC with no known papilloma association. Using targeted nextâ generation and conventional Sanger sequencing, we identified KRAS mutations in 51/51 (100%) OSPs and 5/5 (100%) OSPâ associated SNSCCs. The somatic nature of KRAS mutations was confirmed in a subset of cases with matched germline DNA, and four matched pairs of OSP and concurrent associated SNSCC had concordant KRAS genotypes. In contrast, KRAS mutations were present in only one (5%) SNSCC with no known papilloma association and none of the ISPs, ISPâ associated SNSCCs, or ESPs. This is the first report of somatic KRAS mutations in OSP and OSPâ associated SNSCC. The presence of identical mutations in OSP and concurrent associated SNSCC supports the putative role of OSP as a precursor to SNSCC, and the high frequency and specificity of KRAS mutations suggest that OSP and OSPâ associated SNSCC are biologically distinct from other similar sinonasal tumours. The identification of KRAS mutations in all studied OSP cases represents an important development in our understanding of the pathogenesis of this disease and may have implications for diagnosis and therapy. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
dc.publisherJohn Wiley & Sons, Ltd
dc.subject.othersquamous cell carcinoma
dc.subject.otherSchneiderian
dc.subject.othersinonasal
dc.subject.otherpapilloma
dc.subject.otheroncocytic
dc.subject.otherKRAS
dc.titleActivating KRAS mutations are characteristic of oncocytic sinonasal papilloma and associated sinonasal squamous cell carcinoma
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPathology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133586/1/path4750.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133586/2/path4750_am.pdf
dc.identifier.doi10.1002/path.4750
dc.identifier.sourceThe Journal of Pathology
dc.identifier.citedreferenceSzablewski V, Solassol J, Poizat F, et al. EGFR expression and KRAS and BRAF mutational status in intestinalâ type sinonasal adenocarcinoma. Int J Mol Sci 2013; 14: 5170 â 5181.
dc.identifier.citedreferenceProjetti F, Durand K, Chaunavel A, et al. Epidermal growth factor receptor expression and KRAS and BRAF mutations: study of 39 sinonasal intestinalâ type adenocarcinomas. Hum Pathol 2013; 44: 2116 â 2125.
dc.identifier.citedreferenceHu Y, Lu W, Chen G, et al. Kâ ras G12V transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res 2012; 22: 399 â 412.
dc.identifier.citedreferenceRadkay LA, Chiosea SI, Seethala RR, et al. Thyroid nodules with KRAS mutations are different from nodules with NRAS and HRAS mutations with regard to cytopathologic and histopathologic outcome characteristics. Cancer Cytopathol 2014; 122: 873 â 882.
dc.identifier.citedreferenceStrojan P, Ferlito A, Lund VJ, et al. Sinonasal inverted papilloma associated with malignancy: the role of human papillomavirus infection and its implications for radiotherapy. Oral Oncol 2012; 48: 216 â 218.
dc.identifier.citedreferenceStolze B, Reinhart S, Bulllinger L, et al. Comparative analysis of KRAS codon 12, 13, 18, 61, and 117 mutations using human MCF10A isogenic cell lines. Sci Rep 2015; 5: 8535.
dc.identifier.citedreferencePark JT, Johnson N, Liu S, et al. Differential in vivo tumorigenicity of diverse KRAS mutations in vertebrate pancreas: a comprehensive survey. Oncogene 2015; 34: 2801 â 2806.
dc.identifier.citedreferenceModest DP, Camaj P, Heinemann V, et al. KRAS alleleâ specific activity of sunitinib in an isogenic disease model of colorectal cancer. J Cancer Res Clin Oncol 2013; 139: 953 â 961.
dc.identifier.citedreferenceFatrai S, van Gosliga D, Han L, et al. KRAS(G12V) enhances proliferation and initiates myelomonocytic differentiation in human stem/progenitor cells via intrinsic and extrinsic pathways. J Biol Chem 2011; 286: 6061 â 6070.
dc.identifier.citedreferenceHaigis KM, Kendall KR, Wang Y, et al. Differential effects of oncogenic Kâ Ras and Nâ Ras on proliferation, differentiation and tumor progression in the colon. Nature Genet 2008; 40: 600 â 608.
dc.identifier.citedreferenceDavies BR, Logie A, McKay JS, et al. AZD6244 (ARRYâ 142886), a potent inhibitor of mitogenâ activated protein kinase/extracellular signalâ regulated kinase kinase 1/2 kinases: mechanism of action in vivo, pharmacokinetic/pharmacodynamic relationship, and potential for combination in preclinical models. Mol Cancer Ther 2007; 6: 2209 â 2219.
dc.identifier.citedreferenceBiankin AV, Waddell N, Kassahn KS, et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 2012; 491: 399 â 405.
dc.identifier.citedreferenceCancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature 2014; 511: 543 â 550.
dc.identifier.citedreferenceGasparre G, Romeo G, Rugolo M, et al. Learning from oncocytic tumors: why choose inefficient mitochondria? Biochim Biophys Acta 2011; 1807: 633 â 642.
dc.identifier.citedreferenceChang A, Harawi SJ. Oncocytes, oncocytosis, and oncocytic tumors. Pathol Annu 1992; 27 ( Pt 1 ): 263 â 304.
dc.identifier.citedreferenceUdager AM, McHugh JB, Elenitobaâ Johnson KS, et al. EGFR mutations in sinonasal squamous tumors: oncogenic and therapeutic implications. Oncoscience 2015; 2: 908 â 909.
dc.identifier.citedreferenceNeuzillet C, Tijerasâ Raballand A, de Mestier L, et al. MEK in cancer and cancer therapy. Pharmacol Ther 2014; 141: 160 â 171.
dc.identifier.citedreferenceLopez F, Garcia Inclan C, Perezâ Escuredo J, et al. KRAS and BRAF mutations in sinonasal cancer. Oral Oncol 2012; 48: 692 â 697.
dc.identifier.citedreferenceCancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487: 330 â 337.
dc.identifier.citedreferenceUdager AM, Rolland DC, McHugh JB, et al. Highâ frequency targetable EGFR mutations in sinonasal squamous cell carcinomas arising from inverted sinonasal papilloma. Cancer Res 2015; 75: 2600 â 2606.
dc.identifier.citedreferenceBarnes L, Bedetti C. Oncocytic Schneiderian papilloma: a reappraisal of cylindrical cell papilloma of the sinonasal tract. Hum Pathol 1984; 15: 344 â 351.
dc.identifier.citedreferenceBarnes L. Schneiderian papillomas and nonsalivary glandular neoplasms of the head and neck. Mod Pathol 2002; 15: 279 â 297.
dc.identifier.citedreferenceGarciaâ Inclan C, Lopez F, Perezâ Escuredo J, et al. EGFR status and KRAS/BRAF mutations in intestinalâ type sinonasal adenocarcinomas. Cell Oncol 2012; 35: 443 â 450.
dc.identifier.citedreferenceTimar J. The clinical relevance of KRAS gene mutation in nonâ smallâ cell lung cancer. Curr Opin Oncol 2014; 26: 138 â 144.
dc.identifier.citedreferenceArrington AK, Heinrich EL, Lee W, et al. Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int J Mol Sci 2012; 13: 12153 â 12168.
dc.identifier.citedreferenceBornholdt J, Hansen J, Steiniche T, et al. Kâ ras mutations in sinonasal cancers in relation to wood dust exposure. BMC Cancer 2008; 8: 53.
dc.identifier.citedreferenceCancer Genome Atlas Network. Comprehensive genomic characterization of head and neck squamous cell carcinomas. Nature 2015; 517: 576 â 582.
dc.identifier.citedreferenceStransky N, Egloff AM, Tward AD, et al. The mutational landscape of head and neck squamous cell carcinoma. Science 2011; 333: 1157 â 1160.
dc.identifier.citedreferenceAgrawal N, Frederick MJ, Pickering CR, et al. Exome sequencing of head and neck squamous cell carcinoma reveals inactivating mutations in NOTCH1. Science 2011; 333: 1154 â 1157.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.