Show simple item record

The Pickup Ion Composition Spectrometer

dc.contributor.authorGilbert, Jason A.
dc.contributor.authorZurbuchen, Thomas H.
dc.contributor.authorBattel, Steven
dc.date.accessioned2016-09-17T23:54:47Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-06
dc.identifier.citationGilbert, Jason A.; Zurbuchen, Thomas H.; Battel, Steven (2016). "The Pickup Ion Composition Spectrometer." Journal of Geophysical Research: Space Physics 121(6): 5097-5104.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/133602
dc.description.abstractObservations of newly ionized atoms that are picked up by the magnetic field in the expanding solar wind contain crucial information about the gas or dust compositions of their origins. The pickup ions (PUIs) are collected by plasma mass spectrometers and analyzed for their density, composition, and velocity distribution. In addition to measurements of PUIs from planetary sources, in situ measurements of interstellar gas have been made possible by spectrometers capable of differentiating between heavy ions of solar and interstellar origin. While important research has been done on these often singly charged ions, the instruments that have detected many of them were designed for the energy range and ionic charge states of the solar wind and energized particle populations, and not for pickup ions. An instrument optimized for the complete energy and time‐of‐flight characterization of pickup ions will unlock a wealth of data on these hitherto unobserved or unresolved PUI species. The Pickup Ion Composition Spectrometer (PICSpec) is one such instrument and can enable the next generation of pickup ion and isotopic mass composition measurements. By combining a large‐gap time‐of‐flight–energy sensor with a −100 kV high‐voltage power supply for ion acceleration, PUIs will not only be above the detection threshold of traditional solid‐state energy detectors but also be resolved sufficiently in time of flight that isotopic composition can be determined. This technology will lead to a new generation of space composition instruments, optimized for measurements of both heliospheric and planetary pickup ions.Key PointsAddresses several measurement challenges for in situ measurement of pickup ionsEnergy‐per‐charge filtering with minimal voltage stepping; 100 keV/e post accelerationEnables measurements of heavy pickup ion isotopes, solar deuterium abundance
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherpickup ions
dc.subject.othermass spectrometry
dc.subject.otherpower supply
dc.titleThe Pickup Ion Composition Spectrometer
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133602/1/jgra52700.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133602/2/jgra52700_am.pdf
dc.identifier.doi10.1002/2016JA022381
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceKikuchi, M. ( 2011 ), Hydrogen fusion: Light nuclei and theory of fusion reactions, in Frontiers in Fusion Research, pp. 15 – 32, Springer, London, doi: 10.1007/978-1-84996-411-1_2.
dc.identifier.citedreferenceGloeckler, G., et al. ( 1995 ), The Solar Wind and Suprathermal Ion Composition investigation on the Wind spacecraft, Space Sci. Rev., 71, 79 – 124, doi: 10.1007/BF00751327.
dc.identifier.citedreferenceGloeckler, G., et al. ( 1998 ), Investigation of the composition of solar and interstellar matter using solar wind and pickup ion measurements with SWICS and SWIMS on the ACE spacecraft, Space Sci. Rev., 86, 497 – 539, doi: 10.1023/A:1005036131689.
dc.identifier.citedreferenceGloeckler, G., et al. ( 2004a ), Observations of the helium focusing cone with pickup ions, Astron. Astrophys., 426, 845 – 854, doi: 10.1051/0004-6361:20035768.
dc.identifier.citedreferenceGloeckler, G., F. Allegrini, H. A. Elliott, D. J. McComas, N. A. Schwadron, J. Geiss, R. von Steiger, and G. H. Jones ( 2004b ), Cometary ions trapped in a coronal mass ejection, Astrophys. J., 604, L121 – L124, doi: 10.1086/383524.
dc.identifier.citedreferenceGrimberg, A., H. Baur, P. Bochsler, F. Bühler, D. S. Burnett, C. C. Hays, V. S. Heber, A. J. G. Jurewicz, and R. Wieler ( 2006 ), Solar wind neon from Genesis: Implications for the lunar noble gas record, Science, 314, 1133 – 1135, doi: 10.1126/science.1133568.
dc.identifier.citedreferenceGrünwaldt, H., et al. ( 1997 ), Venus tail ray observation near Earth, Geophys. Res. Lett., 24, 1163 – 1166, doi: 10.1029/97GL01159.
dc.identifier.citedreferenceHilchenbach, M., D. Hovestadt, B. Klecker, and E. Möbius ( 1993 ), Observation of energetic lunar pick‐up ions near Earth, Adv. Space Res., 13, 321 – 324, doi: 10.1016/0273-1177(93)90086-Q.
dc.identifier.citedreferenceHovestadt, D., et al. ( 1995 ), CELIAS—Charge, ELement, and Isotope Analysis System for SOHO, Sol. Phys., 162, 441 – 481, doi: 10.1007/BF00733436.
dc.identifier.citedreferenceKrimigis, S. M., et al. ( 2004 ), Magnetosphere Imaging Instrument (MIMI) on the Cassini Mission to Saturn/Titan, Space Sci. Rev., 114, 233 – 329, doi: 10.1007/s11214-004-1410-8.
dc.identifier.citedreferenceLundin, R., A. Zakharov, R. Pellinen, H. Borg, B. Hultqvist, N. Pissarenko, E. M. Dubinin, S. W. Barabash, I. Liede, and H. Koskinen ( 1989 ), First measurements of the ionospheric plasma escape from Mars, Nature, 341, 609 – 612, doi: 10.1038/341609a0.
dc.identifier.citedreferenceLynch, J., D. Pulliam, R. Leach, and F. Scherb ( 1976 ), The charge spectrum of positive ions in a hydrogen aurora, J. Geophys. Res., 81, 1264 – 1268, doi: 10.1029/JA081i007p01264.
dc.identifier.citedreferenceMöbius, E., D. Rucinski, D. Hovestadt, and B. Klecker ( 1995 ), The helium parameters of the very local interstellar medium as derived from the distribution of He + pickup ions in the solar wind, Astron. Astrophys., 304, 505 – 519.
dc.identifier.citedreferenceOka, M., T. Terasawa, H. Noda, Y. Saito, and T. Mukai ( 2002 ), ‘Torus’ distribution of interstellar helium pickup ions: Direct observation, Geophys. Res. Lett., 29, 54 – 1, doi: 10.1029/2002GL015111.
dc.identifier.citedreferenceProdanović, T., and B. D. Fields ( 2003 ), On nonprimordial deuterium production by accelerated particles, Astrophys. J., 597, 48 – 56, doi: 10.1086/378272.
dc.identifier.citedreferenceScherb, F. ( 2009 ), The abundance of deuterium and He 3 in the solar wind, arXiv:0909.1279.
dc.identifier.citedreferenceSullivan, J. D. ( 1971 ), Geometrical factor and directional response of single and multi‐element particle telescopes, Nucl. Instrum. Methods, 95, 5 – 11, doi: 10.1016/0029-554X(71)90033-4.
dc.identifier.citedreferencevon Steiger, R., N. A. Schwadron, L. A. Fisk, J. Geiss, G. Gloeckler, S. Hefti, B. Wilken, R. F. Wimmer‐Schweingruber, and T. H. Zurbuchen ( 2000 ), Composition of quasi‐stationary solar wind flows from Ulysses/solar wind ion composition spectrometer, J. Geophys. Res., 105, 27,217 – 27,238, doi: 10.1029/1999JA000358.
dc.identifier.citedreferenceYoung, D. T., et al. ( 2004 ), Cassini Plasma Spectrometer investigation, Space Sci. Rev., 114, 1 – 112, doi: 10.1007/s11214-004-1406-4.
dc.identifier.citedreferenceZurbuchen, T. H., and D. J. Gershman ( 2016 ), Innovations in plasma sensors, J. Geophys. Res. Space Physics, 121, 2891 – 2901, doi: 10.1002/2016JA022493.
dc.identifier.citedreferenceZurbuchen, T. H., J. M. Raines, G. Gloeckler, S. M. Krimigis, J. A. Slavin, P. L. Koehn, R. M. Killen, A. L. Sprague, R. L. McNutt, and S. C. Solomon ( 2008 ), MESSENGER observations of the composition of Mercury’s ionized exosphere and plasma environment, Science, 321, 90 – 92, doi: 10.1126/science.1159314.
dc.identifier.citedreferenceBalsiger, H., et al. ( 2007 ), ROSINA—Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, Space Sci. Rev., 128, 745 – 801, doi: 10.1007/s11214-006-8335-3.
dc.identifier.citedreferencede Laeter, J. R., J. K. Böhlke, P. De Bièvre, H. Hidaka, H. S. Peiser, K. J. R. Rosman, and P. D. P. Taylor ( 2003 ), Atomic weights of the elements: Review 2000 (IUPAC technical report), Pure Appl. Chem., 75, 683 – 800, doi: 10.1351/pac200375060683.
dc.identifier.citedreferenceEberhardt, P., J. Geiss, H. Graf, N. Grögler, U. Krähenbühl, H. Schwaller, J. Schwarzmüller, and A. Stettler ( 1970 ), Trapped solar wind noble gases, exposure age and K/Ar‐age in Apollo 11 lunar fine material, Geochim. Cosmochim. Acta Suppl., 1, 1037 – 1070.
dc.identifier.citedreferenceGershman, D. J., and T. H. Zurbuchen ( 2010 ), Modeling extreme ultraviolet suppression of electrostatic analyzers, Rev. Sci. Instrum., 81, 045111, doi: 10.1063/1.3378685.
dc.identifier.citedreferenceSutton, J. F., and J. E. Stern ( 1975 ), Spacecraft high‐voltage power supply construction, NASA Tech. Rep. TN D‐7948.
dc.identifier.citedreferenceGershman, D. J., L. A. Fisk, G. Gloeckler, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, and S. C. Solomon ( 2014 ), The velocity distribution of pickup He + measured at 0.3 AU by MESSENGER, Astrophys. J., 788, 124, doi: 10.1088/0004-637X/788/2/124.
dc.identifier.citedreferenceGilbert, J. A. ( 2008 ), Advanced instrumentation and flux mapping techniques for the study of the space environment, PhD dissertation, Univ. of Michigan, Ann Arbor, Mich.
dc.identifier.citedreferenceGilbert, J. A., R. A. Lundgren, M. H. Panning, S. Rogacki, and T. H. Zurbuchen ( 2010 ), An optimized three‐dimensional linear‐electric‐field time‐of‐flight analyzer, Rev. Sci. Instrum., 81, 053302, doi: 10.1063/1.3429941.
dc.identifier.citedreferenceGilbert, J. A., D. J. Gershman, G. Gloeckler, R. A. Lundgren, T. H. Zurbuchen, T. M. Orlando, J. McLain, and R. von Steiger ( 2014 ), Invited article: Characterization of background sources in space‐based time‐of‐flight mass spectrometers, Rev. Sci. Instrum., 85, 091301, doi: 10.1063/1.4894694.
dc.identifier.citedreferenceGilbert, J. A., S. T. Lepri, M. Rubin, M. Combi, and T. H. Zurbuchen ( 2015 ), In situ plasma measurements of fragmented comet 73P Schwassmann‐Wachmann 3, Astrophys. J., 815, 12, doi: 10.1088/0004-637X/815/1/12.
dc.identifier.citedreferenceGloeckler, G., and J. Geiss ( 1996 ), Abundance of 3 He in the local interstellar cloud, Nature, 381, 210 – 212, doi: 10.1038/381210a0.
dc.identifier.citedreferenceGloeckler, G., et al. ( 1985 ), The Charge‐Energy‐Mass spectrometer for 0.3–300 keV/e ions on the AMPTE CCE, IEEE Trans. Geosci. Remote Sens., GE‐23, 234 – 240, doi: 10.1109/TGRS.1985.289519.
dc.identifier.citedreferenceGloeckler, G., et al. ( 1992 ), The Solar Wind Ion Composition Spectrometer, Astron. Astrophys. Suppl. Ser., 92, 267 – 289.
dc.identifier.citedreferenceGloeckler, G., J. Geiss, H. Balsiger, L. A. Fisk, A. B. Galvin, F. M. Ipavich, K. W. Ogilvie, R. von Steiger, and B. Wilken ( 1993 ), Detection of interstellar pick‐up hydrogen in the Solar System, Science, 261, 70 – 73, doi: 10.1126/science.261.5117.70.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.