Show simple item record

Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model

dc.contributor.authorHu, Haoguo
dc.contributor.authorWang, Jia
dc.contributor.authorLiu, Hui
dc.contributor.authorGoes, Joaquim
dc.date.accessioned2016-09-17T23:54:52Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-06
dc.identifier.citationHu, Haoguo; Wang, Jia; Liu, Hui; Goes, Joaquim (2016). "Simulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model." Journal of Geophysical Research: Oceans 121(6): 4041-4055.
dc.identifier.issn2169-9275
dc.identifier.issn2169-9291
dc.identifier.urihttps://hdl.handle.net/2027.42/133606
dc.description.abstractA three‐dimensional physical‐biological model has been used to simulate seasonal phytoplankton variations in the Bering and Chukchi Seas with a focus on understanding the physical and biogeochemical mechanisms involved in the formation of the Bering Sea Green Belt (GB) and the Subsurface Chlorophyll Maxima (SCM). Model results suggest that the horizontal distribution of the GB is controlled by a combination of light, temperature, and nutrients. Model results indicated that the SCM, frequently seen below the thermocline, exists because of a rich supply of nutrients and sufficient light. The seasonal onset of phytoplankton blooms is controlled by different factors at different locations in the Bering‐Chukchi Sea. In the off‐shelf central region of the Bering Sea, phytoplankton blooms are regulated by available light. On the Bering Sea shelf, sea ice through its influence on light and temperature plays a key role in the formation of blooms, whereas in the Chukchi Sea, bloom formation is largely controlled by ambient seawater temperatures. A numerical experiment conducted as part of this study revealed that plankton sinking is important for simulating the vertical distribution of phytoplankton and the seasonal formation of the SCM. An additional numerical experiment revealed that sea ice algae account for 14.3–36.9% of total phytoplankton production during the melting season, and it cannot be ignored when evaluating primary productivity in the Arctic Ocean.Key PointsSea ice plays a key role in algal bloom in the Bering ShelfSea ice algae account for a signification of phytoplankton biomassPlankton sinking is important for model simulations
dc.publisherInst. of Mar. Sci., Univ. of Alaska
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBering Sea
dc.subject.othercirculation
dc.subject.othersea ice
dc.subject.othermodeling
dc.subject.otherice algae
dc.titleSimulation of phytoplankton distribution and variation in the Bering‐Chukchi Sea using a 3‐D physical‐biological model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric and Oceanic Sciences
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133606/1/jgrc21750_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133606/2/jgrc21750.pdf
dc.identifier.doi10.1002/2016JC011692
dc.identifier.sourceJournal of Geophysical Research: Oceans
dc.identifier.citedreferenceMcRoy, C. P., and J. J. Goering ( 1974 ), The influence of ice on the primary productivity of the Bering Sea, in Oceanography of the Bering Sea With Emphasis on Renewable Resource, edited by D. W. Hood and E. J. Kelley, pp. 403 – 421, Inst. of Mar. Sci., Univ. of Alaska, Fairbanks.
dc.identifier.citedreferenceStabeno, P. J., E. Farley, N. Kachel, S. Moore, C. Mordy, J. M. Napp, J. E. Overland, A. I. Pinchuk, and M. F. Sigler ( 2012 ), A comparison of the physics of the northern and southern shelves of the eastern Bering Sea and some implications for the ecosystem, Deep Sea Res., Part II, 65–70, 14 – 30, doi: 10.1016/j.dsr2.2012.02.019.
dc.identifier.citedreferenceSpringer, A. M., C. P. McRoy, and M. V. Flint ( 1996 ), The Bering Sea Green Belt: Shelf‐edge processes and ecosystem productivity, Fish. Oceanogr., 35, 205 – 223.
dc.identifier.citedreferenceArrigo, K. R., Z. W. Brown, and M. M. Mills ( 2014 ), Sea ice algal biomass and physiology in the Amundsen Sea, Antarctica, Elementa: Science of the Anthropocene, 2 ( 1 ), 000028.
dc.identifier.citedreferenceCooper, L. W., M. Janout, K. E. Frey, R. Pirtle‐Levy, M. Guarinello, J. M. Grebmeier, and J. R. Lovvorn ( 2012 ), The relationship between sea ice break‐up, water mass variation, chlorophyll biomass, and sedimentation in the northern Bering Sea, Deep Sea Res., Part II, 65–70, 141 – 162.
dc.identifier.citedreferenceEppley, R. W. ( 1972 ), Temperature and phytoplankton growth in the sea, Fish. Bull., 70, 1063 – 1085.
dc.identifier.citedreferenceGarrison, D. L., K. R. Buck, and G. A. Fryxell ( 1987 ), Algal assemblages in Antarctic pack ice and ice‐edge plankton, J. Phycol., 23, 564 – 572.
dc.identifier.citedreferenceGoes, J., M. Gomes, E. Haugen, K. McKee, E. D’Sa, A. Chekalyuk, D. Stoecker, P. Stabeno, S. Saitoh, and R. Sambrotto ( 2014 ), Fluorescence, pigment and microscopic characterization of Bering Sea phytoplankton community structure and photosynthetic competency in the presence of a Cold Pool during summer, Deep Sea Res., Part II, 109, 84 – 99, doi: 10.1016/j.dsr2.2013.12.004.
dc.identifier.citedreferenceHu, H., and J. Wang ( 2010 ), Modeling effects of tidal and wave mixing on circulation and thermohaline structures in the Bering Sea: Process studies, J. Geophys. Res., 115, C01006, doi: 10.1029/2008JC005175.
dc.identifier.citedreferenceHu, H., Z. Wan, and Y. Yuan ( 2004 ), Simulation of seasonal variation of phytoplankton in the South Yellow Sea and analysis on its influential factors [in Chinese with English abstract], Acta Oceanol. Sin., 6, 74 – 88.
dc.identifier.citedreferenceHu, H., J. Wang, and D. R. Wang ( 2011 ), A model‐data study of the 1999 St. Lawrence polynya in the Bering Sea, J. Geophys. Res., 116, C12018, doi: 10.1029/2011JC007309.
dc.identifier.citedreferenceIvlev, V. S. ( 1945 ), The biological productivity of waters, Usp. Sovremennoi Biol., 19, 98 – 120.
dc.identifier.citedreferenceJin, M., C. J. Deal, J. Wang, N. Tanaka, and M. Ikeda ( 2006 ), Vertical mixing effects on the phytoplankton bloom in the southeastern Bering Sea mid‐shelf, J. Geophys. Res., 111, C03002, doi: 10.1029/2005JC002994.
dc.identifier.citedreferenceLomas, M. W., S. B. Moran, J. R. Casey, D. W. Bell, M. Tiahlo, J. Whitefield, R. P. Kelly, J. T. Mathis, and E. D. Cokelet ( 2012 ), Spatial and seasonal variability of primary production on the Eastern Bering Sea shelf, Deep Sea Res., Part II, 65, 126 – 140.
dc.identifier.citedreferenceMeguro, H., K. Ito, and H. Fukushima ( 1966 ), Diatoms and the ecological conditions of their growth in sea ice in the Arctic Ocean, Science, 152 ( 3725 ), 1089 – 1090.
dc.identifier.citedreferenceNMFS ( 2014 ), COMMERCIAL FISHERIES STATISTICS, Fisheries of the United States. [Available at http://www.st.nmfs.noaa.gov/commercial-fisheries/fus/fus14/index.]
dc.identifier.citedreferencePlatt, T., C. L. Gallegos, and W. G. Harrison ( 1980 ), Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton, J. Mar. Res., 38, 687 – 701.
dc.identifier.citedreferenceSchandelmeier, L., and V. Alexander ( 1981 ), An analysis of the influence of ice on spring phytoplankton population structure in the southeast Bering Sea, Limnol. Oceanogr., 26, 935 – 943.
dc.identifier.citedreferenceSigler, M., P. Stabeno, L. Eisner, J. Napp, and F. Mueter ( 2014 ), Spring and fall phytoplankton blooms in a productive subarctic ecosystem, the eastern Bering Sea, during 1995‐2011, Deep Sea Res., Part II, 109, 71 – 83, doi: 10.1016/j.dsr2.2013.12.007.
dc.identifier.citedreferenceSteele, M., R. Rebecca, and W. Ermold ( 2001 ), PHC: A global ocean hydrography with a high‐quality Arctic Ocean, J. Clim., 14, 2079 – 2087.
dc.identifier.citedreferenceStoecker, D., A. Weigel, and J. Goes ( 2014 ), Microzooplankton grazing in the Eastern Bering Sea in summer, Deep Sea Res., Part II, 109, 145 – 156, doi: 10.1016/j.dsr2.2013.09.017.
dc.identifier.citedreferenceWang, J., H. Hu, K. Mizobata, and S. Saitoh ( 2009 ), Seasonal variations of sea ice and ocean circulation in the Bering Sea: A model‐data fusion study, J. Geophys. Res., 114, C02011, doi: 10.1029/2008JC004727.
dc.identifier.citedreferenceWang, J., H. Hu, J. Goes, J. Miksis‐Olds, C. Mouw, E. D’Sa, H. Gomes, D. R. Wang, K. Mizobata, S. Saitoh, and L. Luo ( 2013 ), A modeling study of seasonal variations of sea ice and plankton in the Bering and Chukchi Seas during 2007–2008, J. Geophys. Res. Oceans, 118, 1 – 14, doi: 10.1029/2012JC008322.
dc.identifier.citedreferenceZhang, J., Y. H. Spitz, M. Steele, C. Ashjian, R. Campbell, L. Berline, and P. Matrai ( 2010 ), Modeling the impact of declining sea ice on the Arctic marine planktonic ecosystem, J. Geophys. Res., 115, C10015, doi: 10.1029/2009JC005387.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.