Show simple item record

Future Arctic temperature change resulting from a range of aerosol emissions scenarios

dc.contributor.authorWobus, Cameron
dc.contributor.authorFlanner, Mark
dc.contributor.authorSarofim, Marcus C.
dc.contributor.authorMoura, Maria Cecilia P.
dc.contributor.authorSmith, Steven J.
dc.date.accessioned2016-09-17T23:54:57Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-06
dc.identifier.citationWobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; Moura, Maria Cecilia P.; Smith, Steven J. (2016). "Future Arctic temperature change resulting from a range of aerosol emissions scenarios." Earth’s Future 4(6): 270-281.
dc.identifier.issn2328-4277
dc.identifier.issn2328-4277
dc.identifier.urihttps://hdl.handle.net/2027.42/133610
dc.description.abstractThe Arctic temperature response to emissions of aerosols—specifically black carbon (BC), organic carbon (OC), and sulfate—depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present‐day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present‐day emissions from the domestic and transportation sectors generate the majority of present‐day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO2 emissions from the energy sector. Thus, long‐term climate mitigation strategies that are focused on reducing carbon dioxide (CO2) emissions from the energy sector could generate short‐term, aerosol‐induced Arctic warming. A properly phased approach that targets BC‐rich emissions from the transportation sector as well as the domestic sectors in key regions—while simultaneously working toward longer‐term goals of CO2 mitigation—could potentially avoid some amount of short‐term Arctic warming.Key PointsReductions in anthropogenic black carbon emissions alone could slow Arctic warming by mid‐centuryArctic cooling from reduced BC is more than offset by warming from reduced SO2 across all of the RCP mitigation scenariosDomestic and transport emissions from Asia hold the greatest potential for reducing Arctic warming from anthropogenic aerosols
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBlack carbon
dc.subject.otherShort‐lived climate forcers
dc.subject.otherClimate policy
dc.subject.otherArctic climate
dc.titleFuture Arctic temperature change resulting from a range of aerosol emissions scenarios
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133610/1/eft2124_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133610/2/eft2124.pdf
dc.identifier.doi10.1002/2016EF000361
dc.identifier.sourceEarth’s Future
dc.identifier.citedreferenceSand, M., T. K. Berntsen, K. von Salzen, M. G. Flanner, J. Langner, and D. G. Victor ( 2015 ), Response of arctic temperature to changes in emissions of short‐lived climate forcers, Nat. Clim. Change, 6, 286 – 289, doi: 10.1038/nclimate2880.
dc.identifier.citedreferenceEckhardt, S., et al. ( 2015 ), Current model capabilities for simulating black carbon and sulfate concentrations in the Arctic atmosphere: a multi‐model evaluation using a comprehensive measurement data set, Atmos. Chem. Phys., 15 ( 16 ), 9413 – 9433, doi: 10.5194/acp-15-9413-2015.
dc.identifier.citedreferenceFlanner, M. G. ( 2013 ), Arctic climate sensitivity to local black carbon, J. Geophys. Res., 118 ( 4 ), 1840 – 1851, doi: 10.1002/JGRD.50176.
dc.identifier.citedreferenceFlanner, M. G., C. S. Zender, J. T. Randerson, and P. J. Rasch ( 2007 ), Present day climate forcing and response from black carbon in snow, J. Geophys. Res., 112, D11202, doi: 10.1029/2006JD008003.
dc.identifier.citedreferenceFrancis, J. A., and S. J. Vavrus ( 2012 ), Evidence linking Arctic amplification to extreme weather in mid‐latitudes, Geophys. Res. Lett., 39 ( 6 ), L06801, doi: 10.1029/2012GL051000.
dc.identifier.citedreferenceHansen, J., and L. Nazarenko ( 2004 ), Soot climate forcing via snow and ice albedos, Proc. Natl. Acad. Sci. U. S. A., 101 ( 2 ), 423 – 428, doi: 10.1073/pnas.2237157100.
dc.identifier.citedreferenceHolland, M. M., and C. M. Bitz ( 2003 ), Polar amplification of climate change in coupled models, Clim. Dyn., 21 ( 3–4 ), 221 – 232, doi: 10.1007/s00382-003-0332-6.
dc.identifier.citedreferenceJacobson, M. Z. ( 2010 ), Short‐term effects of controlling fossil‐fuel soot, biofuel soot and gases, and methane on climate, arctic ice, and air pollution health, J. Geophys. Res., 115, D14209, doi: 10.1029/2009JD013795.
dc.identifier.citedreferenceKim, S. H., J. Edmonds, J. Lurz, S. J. Smith, and M. Wise ( 2006 ), The ObjECTS framework for integrated assessment: hybrid modeling of transportation, Energy J., 27 ( Special Issue #2 ), 51 – 80.
dc.identifier.citedreferenceMasui, T., K. Matsumoto, Y. Hijioka, T. Kinoshita, T. Nozawa, S. Ishiwatari, E. Kato, P. R. Shukla, Y. Yamagata, and M. Kainuma ( 2011 ), An emission pathway to stabilize at 6 W/m 2 of radiative forcing, Clim. Change, 59 – 76, doi: 10.1007/s10584-011-0150-5.
dc.identifier.citedreferenceSarofim, M., M. Flanner, and C. Wobus ( 2013 ), Contributions of carbonaceous aerosol emissions from different regions and sectors to Arctic temperature change, presented at the Am. Geophys. Union Conf., San Francisco, Calif., Abstract A41F‐0124.
dc.identifier.citedreferenceSchuur, E. A. G., et al. ( 2015 ), Climate change and the permafrost carbon feedback, Nature, 520 ( 7546 ), 171 – 179, doi: 10.1038/nature14338.
dc.identifier.citedreferenceShindell, D., and G. Faluvegi ( 2009 ), Climate response to regional radiative forcing during the twentieth century, Nat. Geosci., 2, 294 – 300, doi: 10.1038/ngeo473.
dc.identifier.citedreferenceShindell, D., et al. ( 2012 ), Simultaneously mitigating near‐term climate change and improving human health and food security, Science, 335 ( 6065 ), 183 – 189, doi: 10.1126/science.1210026.
dc.identifier.citedreferenceSmith, S. J., and A. Mizrahi ( 2013 ), Near‐term climate mitigation by short‐lived forcers, Proc. Natl. Acad. Sci. U. S. A., 110 ( 35 ), 14202 – 14206, doi: 10.1073/pnas.1308470110.
dc.identifier.citedreferenceStohl, A., et al. ( 2015 ), Evaluating the climate and air quality impacts of short‐lived pollutants, Atmos. Chem. Phys., 15 ( 18 ), 10529 – 10566, doi: 10.5194/acp-15-10529-2015.
dc.identifier.citedreferenceThomson, A. M., et al. ( 2011 ), RCP4.5: a pathway for stabilization of radiative forcing by 2100, Clim. Change, 109 ( 1–2 ), 77 – 94, doi: 10.1007/s10584-011-0151-4.
dc.identifier.citedreferencevan der Werf, G. R., J. T. Randerson, L. Giglio, G. J. Collatz, M. Mu, P. S. Kasibhatla, D. C. Morton, R. S. DeFries, Y. Jin, and T. T. van Leeuwen ( 2010 ), Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009), Atmos. Chem. Phys., 10 ( 23 ), 11707 – 11735, doi: 10.5194/acp-10-11707-2010.
dc.identifier.citedreferencevan Vuuren, D. P., et al. ( 2011a ), The representative concentration pathways: an overview, Clim. Change, 109, 5 – 31, doi: 10.1007/s10584-011-0148-z.
dc.identifier.citedreferencevan Vuuren, D. P., et al. ( 2011b ), RCP2.6: exploring the possibility to keep global mean temperature change below 2°C, Clim. Change, 109, 95 – 116, doi: 10.1007/s10584-011-0152-3.
dc.identifier.citedreferenceRiahi, K., S. Rao, V. Krey, C. Cho, V. Chirkov, G. Fischer, G. Kindermann, N. Nakicenovic, and P. Rafaj ( 2011 ), RCP 8.5‐A scenario of comparatively high greenhouse gas emissions, Clim. Change, 109 ( 1–2 ), 33 – 57.
dc.identifier.citedreferenceRogelj, J., M. Schaeffe, M. Meinshausen, D. T. Shindell, W. Hare, Z. Klimont, G. J. M. Velders, M. Amann, and H. J. Schellnhuber ( 2014 ), Disentangling the effects of CO 2 and short‐lived climate forcer mitigation, in Proceedings of the National Academy of Sciences of the United States of America, 111 ( 46 ), 16325 – 16330, doi: 10.1073/pnas.1415631111.
dc.identifier.citedreferenceAcosta Navarro, J. C., V. Varma, I. Riipinen, Ø. Seland, A. Kirkevåg, H. Struthers, T. Iversen, H.‐C. Hansson, and A. M. L. Ekman ( 2016 ), Amplification of Arctic warming by past air pollution reductions in Europe, Nat. Geosci., 9, 277 – 281, doi: 10.1038/ngeo2673.
dc.identifier.citedreferenceAndreae, M. O., and P. Merlet ( 2001 ), Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles, 15 ( 4 ), 955 – 966, doi: 10.1029/2000GB001382.
dc.identifier.citedreferenceArctic Monitoring and Assessment Programme ( 2015 ), Black carbon and ozone as Arctic climate forcers, vii + 116 pp., Arctic Monitoring and Assessment Programme, Oslo, Norway.
dc.identifier.citedreferenceBond, T. C., et al. ( 2013 ), Bounding the role of black carbon in the climate system: a scientific assessment, J. Geophys. Res., 118, 5380 – 5552, doi: 10.1002/JGRD.50171.
dc.identifier.citedreferenceBrowse, J., K. S. Carslaw, A. Schmidt, and J. J. Corbett ( 2013 ), Impact of future Arctic shipping on high‐latitude black carbon deposition, Geophys. Res. Lett., 40 ( 16 ), 4459 – 4463, doi: 10.1002/GRL.50876.
dc.identifier.citedreferenceCharlson, R. J., S. E. Schwartz, J. M. Hales, R. D. Cess, J. J. Coakley, J. E. Hansen, and D. J. Hofmann ( 1992 ), Climate forcing by anthropogenic aerosols, Science, 255 ( 5043 ), 423 – 430, doi: 10.1126/science.255.5043.423.
dc.identifier.citedreferenceCollins, W. J., M. M. Fry, H. Yu, J. S. Fuglestvedt, D. T. Shindell, and J. J. West ( 2013 ), Global and regional temperature‐change potentials for near‐term climate forcers, Atmos. Chem. Phys., 13 ( 5 ), 2471 – 2485, doi: 10.5194/acp-13-2471-2013.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.