Show simple item record

SCN8A encephalopathy: Research progress and prospects

dc.contributor.authorMeisler, Miriam H.
dc.contributor.authorHelman, Guy
dc.contributor.authorHammer, Michael F.
dc.contributor.authorFureman, Brandy E.
dc.contributor.authorGaillard, William D.
dc.contributor.authorGoldin, Alan L.
dc.contributor.authorHirose, Shinichi
dc.contributor.authorIshii, Atsushi
dc.contributor.authorKroner, Barbara L.
dc.contributor.authorLossin, Christoph
dc.contributor.authorMefford, Heather C.
dc.contributor.authorParent, Jack M.
dc.contributor.authorPatel, Manoj
dc.contributor.authorSchreiber, John
dc.contributor.authorStewart, Randall
dc.contributor.authorWhittemore, Vicky
dc.contributor.authorWilcox, Karen
dc.contributor.authorWagnon, Jacy L
dc.contributor.authorPearl, Phillip L.
dc.contributor.authorVanderver, Adeline
dc.contributor.authorScheffer, Ingrid E.
dc.date.accessioned2016-09-17T23:55:27Z
dc.date.available2017-10-05T14:33:49Zen
dc.date.issued2016-07
dc.identifier.citationMeisler, Miriam H.; Helman, Guy; Hammer, Michael F.; Fureman, Brandy E.; Gaillard, William D.; Goldin, Alan L.; Hirose, Shinichi; Ishii, Atsushi; Kroner, Barbara L.; Lossin, Christoph; Mefford, Heather C.; Parent, Jack M.; Patel, Manoj; Schreiber, John; Stewart, Randall; Whittemore, Vicky; Wilcox, Karen; Wagnon, Jacy L; Pearl, Phillip L.; Vanderver, Adeline; Scheffer, Ingrid E. (2016). "SCN8A encephalopathy: Research progress and prospects." Epilepsia 57(7): 1027-1035.
dc.identifier.issn0013-9580
dc.identifier.issn1528-1167
dc.identifier.urihttps://hdl.handle.net/2027.42/133635
dc.publisherWiley Periodicals, Inc.
dc.subject.otherSodium channel
dc.subject.otherMutation
dc.subject.otherDrug screening
dc.subject.otherSCN8A
dc.subject.otherBioregistry
dc.subject.otherEncephalopathy
dc.subject.otherNav1.6
dc.titleSCN8A encephalopathy: Research progress and prospects
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133635/1/epi13422.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/133635/2/epi13422_am.pdf
dc.identifier.doi10.1111/epi.13422
dc.identifier.sourceEpilepsia
dc.identifier.citedreferenceOsorio N, Alcaraz G, Padilla F, et al. Differential targeting and functional specialization of sodium channels in cultured cerebellar granule cells. J Physiol 2005; 569: 801 – 816.
dc.identifier.citedreferenceHammer M, Wagnon J, Mefford H, et al. SCN8A epileptic encephalopathy. Gene Rev 2016; In press.
dc.identifier.citedreferenceHowell KB, McMahon JM, Carvill GL, et al. SCN2A encephalopathy: a major cause of epilepsy of infancy with migrating focal seizures. Neurology 2015; 85: 958 – 966.
dc.identifier.citedreferenceCalhoun JD, Isom LL. The role of non‐pore‐forming beta subunits in physiology and pathophysiology of voltage‐gated sodium channels. Handb Exp Pharmacol 2014; 221: 51 – 89.
dc.identifier.citedreferenceSilva J. Slow inactivation of Na(+) channels. Handb Exp Pharmacol 2014; 221: 33 – 49.
dc.identifier.citedreferenceNoujaim SF, Kaur K, Milstein M, et al. A null mutation of the neuronal sodium channel NaV1.6 disrupts action potential propagation and excitation‐contraction coupling in the mouse heart. FASEB J 2012; 26: 63 – 72.
dc.identifier.citedreferencePoulet C, Wettwer E, Grunnet M, et al. Late sodium current in human atrial cardiomyocytes from patients in sinus rhythm and atrial fibrillation. PLoS ONE 2015; 10: e0131432.
dc.identifier.citedreferenceMishra S, Reznikov V, Maltsev VA, et al. Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts. J Physiol 2015; 593: 1409 – 1427.
dc.identifier.citedreferenceSmith MR, Smith RD, Plummer NW, et al. Functional analysis of the mouse Scn8a sodium channel. J Neurosci 1998; 18: 6093 – 6102.
dc.identifier.citedreferencePlummer NW, McBurney MW, Meisler MH. Alternative splicing of the sodium channel SCN8A predicts a truncated two‐domain protein in fetal brain and non‐neuronal cells. J Biol Chem 1997; 272: 24008 – 24015.
dc.identifier.citedreferenceO’Brien JE, Drews VL, Jones JM, et al. Rbfox proteins regulate alternative splicing of neuronal sodium channel SCN8A. Mol Cell Neurosci 2012; 49: 120 – 126.
dc.identifier.citedreferenceCaldwell JH, Schaller KL, Lasher RS, et al. Sodium channel Na(v)1.6 is localized at nodes of ranvier, dendrites, and synapses. Proc Natl Acad Sci USA 2000; 97: 5616 – 5620.
dc.identifier.citedreferenceBoiko T, Rasband MN, Levinson SR, et al. Compact myelin dictates the differential targeting of two sodium channel isoforms in the same axon. Neuron 2001; 30: 91 – 104.
dc.identifier.citedreferenceBoiko T, Van Wart A, Caldwell JH, et al. Functional specialization of the axon initial segment by isoform‐specific sodium channel targeting. J Neurosci 2003; 23: 2306 – 2313.
dc.identifier.citedreferenceGasser A, Ho TS, Cheng X, et al. An ankyrinG‐binding motif is necessary and sufficient for targeting Nav1.6 sodium channels to axon initial segments and nodes of Ranvier. J Neurosci 2012; 32: 7232 – 7243.
dc.identifier.citedreferenceVan Wart A, Trimmer JS, Matthews G. Polarized distribution of ion channels within microdomains of the axon initial segment. J Comp Neurol 2007; 500: 339 – 352.
dc.identifier.citedreferenceOsorio N, Cathala L, Meisler MH, et al. Persistent Nav1.6 current at axon initial segments tunes spike timing of cerebellar granule cells. J Physiol 2010; 588: 651 – 670.
dc.identifier.citedreferenceCruz JS, Silva DF, Ribeiro LA, et al. Resurgent Na+ current: a new avenue to neuronal excitability control. Life Sci 2011; 89: 564 – 569.
dc.identifier.citedreferenceMeisler MH, Kearney JA. Sodium channel mutations in epilepsy and other neurological disorders. J Clin Invest 2005; 115: 2010 – 2017.
dc.identifier.citedreferenceMakinson CD, Tanaka BS, Lamar T, et al. Role of the hippocampus in Nav1.6 (Scn8a) mediated seizure resistance. Neurobiol Dis 2014; 68: 16 – 25.
dc.identifier.citedreferenceKohrman DC, Harris JB, Meisler MH. Mutation detection in the med and medJ alleles of the sodium channel Scn8a. Unusual splicing due to a minor class AT‐AC intron. J Biol Chem 1996; 271: 17576 – 17581.
dc.identifier.citedreferenceAdzhubei IA, Schmidt S, Peshkin L, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010; 7: 248 – 249.
dc.identifier.citedreferenceNg PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res 2003; 31: 3812 – 3814.
dc.identifier.citedreferenceZweig AS, Karolchik D, Kuhn RM, et al. UCSC genome browser tutorial. Genomics 2008; 92: 75 – 84.
dc.identifier.citedreferenceWagnon JL, Barker BS, Hounshell JA, et al. Pathogenic mechanism of recurrent mutations of SCN8A in epileptic encephalopathy. Ann Clin Transl Neurol 2016; 3: 114 – 123.
dc.identifier.citedreferenceChahine M, George AL Jr, Zhou M, et al. Sodium channel mutations in paramyotonia congenita uncouple inactivation from activation. Neuron 1994; 12: 281 – 294.
dc.identifier.citedreferenceMoller RS, Heron SE, Larsen LH, et al. Mutations in KCNT1 cause a spectrum of focal epilepsies. Epilepsia 2015; 56: e114 – e120.
dc.identifier.citedreferenceTrudeau MM, Dalton JC, Day JW, et al. Heterozygosity for a protein truncation mutation of sodium channel SCN8A in a patient with cerebellar atrophy, ataxia, and mental retardation. J Med Genet 2006; 43: 527 – 530.
dc.identifier.citedreferenceGardella E, Becker F, Moller RS, et al. Benign infantile seizures and paroxysmal dyskinesia caused by an SCN8A mutation. Ann Neurol 2016; 79: 428 – 436.
dc.identifier.citedreferenceLiu Y, Lopez‐Santiago LF, Yuan Y, et al. Dravet syndrome patient‐derived neurons suggest a novel epilepsy mechanism. Ann Neurol 2013; 74: 128 – 139.
dc.identifier.citedreferenceHigurashi N, Uchida T, Lossin C, et al. A human Dravet syndrome model from patient induced pluripotent stem cells. Mol Brain 2013; 6: 19.
dc.identifier.citedreferenceJiao J, Yang Y, Shi Y, et al. Modeling Dravet syndrome using induced pluripotent stem cells (iPSCs) and directly converted neurons. Hum Mol Genet 2013; 22: 4241 – 4252.
dc.identifier.citedreferenceBaraban SC, Dinday MT, Hortopan GA. Drug screening in Scn1a zebrafish mutant identifies clemizole as a potential Dravet syndrome treatment. Nat Commun 2013; 4: 2410.
dc.identifier.citedreferenceDinday MT, Baraban SC. Large‐scale phenotype‐based antiepileptic drug screening in a zebrafish model of Dravet syndrome(1,2,3). eNeuro 2015; 2.
dc.identifier.citedreferenceThe NIH/NINDS Anticonvulsant Screening Program (ASP): recommendations from the working group’s 2012 review of the Program. Epilepsia 2012; 53: 1837 – 1839.
dc.identifier.citedreferenceJones JM, Meisler MH. Modeling human epilepsy by TALEN targeting of mouse sodium channel Scn8a. Genesis 2014; 52: 141 – 148.
dc.identifier.citedreferenceGattone P, Lammert W. The epilepsy foundation leads in the rare epilepsy network PCORI award. Epilepsy Behav 2014; 39: 65.
dc.identifier.citedreferenceMcTague A, Howell KB, Cross JH, et al. The genetic landscape of the epileptic encephalopathies of infancy and childhood. Lancet Neurol 2016; 15: 304 – 316.
dc.identifier.citedreferenceLotte J, Bast T, Borusiak P, et al. Effectiveness of antiepileptic therapy in patients with PCDH19 mutations. Seizure 2016; 35: 106 – 110.
dc.identifier.citedreferenceBerg AT, Jallon P, Preux PM. The epidemiology of seizure disorders in infancy and childhood: definitions and classifications. Handb Clin Neurol 2013; 111: 391 – 398.
dc.identifier.citedreferenceBerg AT, Millichap JJ. The 2010 revised classification of seizures and epilepsy. Continuum (Minneap Minn) 2013; 19: 571 – 597.
dc.identifier.citedreferenceRuss SA, Larson K, Halfon N. A national profile of childhood epilepsy and seizure disorder. Pediatrics 2012; 129: 256 – 264.
dc.identifier.citedreferenceBerg AT, Berkovic SF, Brodie MJ, et al. Revised terminology and concepts for organization of seizures and epilepsies: report of the ILAE Commission on Classification and Terminology, 2005–2009. Epilepsia 2010; 51: 676 – 685.
dc.identifier.citedreferenceWagnon JL, Meisler MH. Recurrent and non‐recurrent mutations of SCN8A in epileptic encephalopathy. Front Neurol 2015; 6: 104.
dc.identifier.citedreferenceCarvill GL, Heavin SB, Yendle SC, et al. Targeted resequencing in epileptic encephalopathies identifies de novo mutations in CHD2 and SYNGAP1. Nat Genet 2013; 45: 825 – 830.
dc.identifier.citedreferenceOlson HE, Tambunan D, LaCoursiere C, et al. Mutations in epilepsy and intellectual disability genes in patients with features of Rett syndrome. Am J Med Genet A 2015; 167A: 2017 – 2025.
dc.identifier.citedreferenceHeron SE, Crossland KM, Andermann E, et al. Sodium‐channel defects in benign familial neonatal‐infantile seizures. Lancet 2002; 360: 851 – 852.
dc.identifier.citedreferenceBrunklaus A, Zuberi SM. Dravet syndrome–from epileptic encephalopathy to channelopathy. Epilepsia 2014; 55: 979 – 984.
dc.identifier.citedreferenceBerkovic SF, Heron SE, Giordano L, et al. Benign familial neonatal‐infantile seizures: characterization of a new sodium channelopathy. Ann Neurol 2004; 55: 550 – 557.
dc.identifier.citedreferenceHolland KD, Kearney JA, Glauser TA, et al. Mutation of sodium channel SCN3A in a patient with cryptogenic pediatric partial epilepsy. Neurosci Lett 2008; 433: 65 – 70.
dc.identifier.citedreferenceHaug K, Hallmann K, Rebstock J, et al. The voltage‐gated sodium channel gene SCN2A and idiopathic generalized epilepsy. Epilepsy Res 2001; 47: 243 – 246.
dc.identifier.citedreferenceClaes L, Del‐Favero J, Ceulemans B, et al. De novo mutations in the sodium‐channel gene SCN1A cause severe myoclonic epilepsy of infancy. Am J Hum Genet 2001; 68: 1327 – 1332.
dc.identifier.citedreferencede Kovel CG, Meisler MH, Brilstra EH, et al. Characterization of a de novo SCN8A mutation in a patient with epileptic encephalopathy. Epilepsy Res 2014; 108: 1511 – 1518.
dc.identifier.citedreferenceLarsen J, Carvill GL, Gardella E, et al. The phenotypic spectrum of SCN8A encephalopathy. Neurology 2015; 84: 480 – 489.
dc.identifier.citedreferenceWagnon JL, Korn MJ, Parent R, et al. Convulsive seizures and SUDEP in a mouse model of SCN8A epileptic encephalopathy. Hum Mol Genet 2015; 24: 506 – 515.
dc.identifier.citedreferenceEscayg A, MacDonald BT, Meisler MH, et al. Mutations of SCN1A, encoding a neuronal sodium channel, in two families with GEFS+2. Nat Genet 2000; 24: 343 – 345.
dc.identifier.citedreferenceVeeramah KR, O’Brien JE, Meisler MH, et al. De novo pathogenic SCN8A mutation identified by whole‐genome sequencing of a family quartet affected by infantile epileptic encephalopathy and SUDEP. Am J Hum Genet 2012; 90: 502 – 510.
dc.identifier.citedreferenceAllen AS, Berkovic SF, Cossette P, et al. De novo mutations in epileptic encephalopathies. Nature 2013; 501: 217 – 221.
dc.identifier.citedreferenceMercimek‐Mahmutoglu S, Patel J, Cordeiro D, et al. Diagnostic yield of genetic testing in epileptic encephalopathy in childhood. Epilepsia 2015; 56: 707 – 716.
dc.identifier.citedreferenceBlanchard MG, Willemsen MH, Walker JB, et al. De novo gain‐of‐function and loss‐of‐function mutations of SCN8A in patients with intellectual disabilities and epilepsy. J Med Genet 2015; 52: 330 – 337.
dc.identifier.citedreferenceBoerma RS, Braun KP, van de Broek MP, et al. Remarkable phenytoin sensitivity in 4 children with SCN8A‐related epilepsy: a molecular neuropharmacological approach. Neurotherapeutics 2016; 13: 192 – 197.
dc.identifier.citedreferenceDyment DA, Tétreault M, Beaulieu CL, et al. Whole‐exome sequencing broadens the phenotypic spectrum of rare pediatric epilepsy: a retrospective study. Clin Genet 2015; 88: 34 – 40.
dc.identifier.citedreferenceEstacion M, O’Brien JE, Conravey A, et al. A novel de novo mutation of SCN8A (Nav1.6) with enhanced channel activation in a child with epileptic encephalopathy. Neurobiol Dis 2014; 69: 117 – 123.
dc.identifier.citedreferenceKong W, Zhang Y, Gao Y, et al. SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability. Epilepsia 2015; 56: 431 – 438.
dc.identifier.citedreferenceOhba C, Kato M, Takahashi S, et al. Early onset epileptic encephalopathy caused by de novo SCN8A mutations. Epilepsia 2014; 55: 994 – 1000.
dc.identifier.citedreferenceSingh R, Jayapal S, Goyal S, et al. Early‐onset movement disorder and epileptic encephalopathy due to de novo dominant SCN8A mutation. Seizure 2015; 26: 69 – 71.
dc.identifier.citedreferenceVaher U, Noukas M, Nikopensius T, et al. De novo SCN8A mutation identified by whole‐exome sequencing in a boy with neonatal epileptic encephalopathy, multiple congenital anomalies, and movement disorders. J Child Neurol 2014; 29: NP202‐206.
dc.identifier.citedreferenceFung LW, Kwok SL, Tsui KW. SCN8A mutations in Chinese children with early onset epilepsy and intellectual disability. Epilepsia 2015; 56: 1319 – 1320.
dc.identifier.citedreferenceTakahashi S, Yamamoto S, Okayama A, et al. Electroclinical features of epileptic encephalopathy caused by SCN8A mutation. Pediatr Int 2015; 57: 758 – 762.
dc.identifier.citedreferenceO’Brien JE, Meisler MH. Sodium channel SCN8A (Nav1.6): properties and de novo mutations in epileptic encephalopathy and intellectual disability. Front Genet 2013; 4: 213.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.