Show simple item record

Retino‐cortical stimulus frequency‐dependent gamma coupling: evidence and functional implications of oscillatory potentials

dc.contributor.authorTodorov, Mihail I.
dc.contributor.authorKékesi, Katalin A.
dc.contributor.authorBorhegyi, Zsolt
dc.contributor.authorGalambos, Robert
dc.contributor.authorJuhász, Gábor
dc.contributor.authorHudetz, Anthony G.
dc.date.accessioned2016-10-17T21:16:35Z
dc.date.available2017-12-01T21:54:11Zen
dc.date.issued2016-10
dc.identifier.citationTodorov, Mihail I.; Kékesi, Katalin A. ; Borhegyi, Zsolt; Galambos, Robert; Juhász, Gábor ; Hudetz, Anthony G. (2016). "Retino‐cortical stimulus frequency‐dependent gamma coupling: evidence and functional implications of oscillatory potentials." Physiological Reports (19): n/a-n/a.
dc.identifier.issn2051-817X
dc.identifier.issn2051-817X
dc.identifier.urihttps://hdl.handle.net/2027.42/134072
dc.description.abstractLong‐range gamma band EEG oscillations mediate information transmission between distant brain regions. Gamma band‐based coupling may not be restricted to cortex‐to‐cortex communication but may include extracortical parts of the visual system. The retinogram and visual event‐related evoked potentials exhibit time‐locked, forward propagating oscillations that are candidates of gamma oscillatory coupling between the retina and the visual cortex. In this study, we tested if this gamma coupling is present as indicated by the coherence of gamma‐range (70–200 Hz) oscillatory potentials (OPs) recorded simultaneously from the retina and the primary visual cortex in freely moving, adult rats. We found significant retino‐cortical OP coherence in a wide range of stimulus duration (0.01–1000 msec), stimulus intensity (800–5000 mcd/mm2), interstimulus interval (10–400 msec), and stimulus frequency (0.25–25 Hz). However, at low stimulus frequencies, the OPs were time‐locked, flickering light at 25 Hz entrained continuous OP coherence (steady‐state response, SSR). Our results suggest that the retina and the visual cortex exhibit oscillatory coupling at high‐gamma frequency with precise time locking and synchronization of information transfer from the retina to the visual cortex, similar to cortico‐cortical gamma coupling. The temporal fusion of retino‐cortical gamma coherence at stimulus rates of theater movies may explain the mechanism of the visual illusion of continuity. How visual perception depends on early transformations of ascending sensory information is incompletely understood. By simultaneous measurement of flash‐evoked potentials in the retina and the visual cortex in awake, freely moving rats, we demonstrate for the first time that time‐locked gamma oscillatory potentials exhibit stable retino‐cortical synchrony across a wide range of stimulus parameters and that the temporal continuity of coherence changes with stimulus frequency according to the expected change in the visual illusion of continuity.The retina and the visual cortex exhibit oscillatory coupling at high‐gamma frequency with precise time locking and synchronization of information transfer from the retina to the visual cortex, similar to cortico‐cortical gamma coupling. The temporal fusion of retino‐cortical gamma coherence at stimulus rates of theater movies may explain the mechanism of the visual illusion of continuity.
dc.publisherClarendon Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherOscillations
dc.subject.otherperception
dc.subject.othersynchrony
dc.titleRetino‐cortical stimulus frequency‐dependent gamma coupling: evidence and functional implications of oscillatory potentials
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134072/1/phy212986.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134072/2/phy212986_am.pdf
dc.identifier.doi10.14814/phy2.12986
dc.identifier.sourcePhysiological Reports
dc.identifier.citedreferenceRajkai, C., P. Lakatos, C.‐M. Chen, Z. Pincze, G. Karmos, and C. E. Schroeder. 2008. Transient cortical excitation at the onset of visual fixation. Cereb. Cortex 18: 200 – 209.
dc.identifier.citedreferenceBekisz, M., and A. Wrobel. 1999. Coupling of beta and gamma activity in corticothalamic system of cats attending to visual stimuli. NeuroReport 10: 3589 – 3594.
dc.identifier.citedreferenceBeverina, F., G. Palmas, S. Silvioni, F. Piccione, and G. Silvio. 2003. User adaptive BCIs: SSVEP and P300 based interfaces. PsychNol. J. 1: 331 – 354.
dc.identifier.citedreferenceBuzsaki, G., and X. J. Wang. 2012. Mechanisms of gamma oscillations. Annu. Rev. Neurosci. 35: 203 – 225.
dc.identifier.citedreferenceDelorme, A., and S. Makeig. 2004. EEGLAB: an open source toolbox for analysis of single‐trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134: 9 – 21.
dc.identifier.citedreferenceDitchburn, R. W. 1973. Eye‐movements and visual perception. Clarendon Press, Oxford, U.K. ISBN‐10: 0198573715; ISBN‐13: 978‐0198573715.
dc.identifier.citedreferenceDong, C. J., P. Agey, and W. A. Hare. 2004. Origins of the electroretinogram oscillatory potentials in the rabbit retina. Vis. Neurosci. 21: 533 – 543.
dc.identifier.citedreferenceFries, P., J. H. Schroder, P. R. Roelfsema, W. Singer, and A. K. Engel. 2002. Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection. J. Neurosci. 22: 3739 – 3754.
dc.identifier.citedreferenceFröhlich, F. W. 1914. Beiträge zur allgemeinen Physiologie der Sinnesorgane. Zs. f. Sinnesphsiologie 48: 28 – 164.
dc.identifier.citedreferenceGranit, R. 1933. The components of the retinal action potential in mammals and their relation to the discharge in the optic nerve. J. Physiol. 77: 207 – 239.
dc.identifier.citedreferenceKaplan, E., and R. Shapley. 1984. The origin of the S (slow) potential in the mammalian lateral geniculate nucleus. Exp. Brain Res. 55: 111 – 116.
dc.identifier.citedreferenceLopez, L., A. Brusa, A. Fadda, S. Loizzo, A. Martinangeli, W. G. Sannita, et al. 2002. Modulation of flash stimulation intensity and frequency: effects on visual evoked potentials and oscillatory potentials recorded in awake, freely moving mice. Behav. Brain Res. 131: 105 – 114.
dc.identifier.citedreferenceLuczak, A., B. L. McNaughton, and K. D. Harris. 2015. Packet‐based communication in the cortex. Nat. Rev. Neurosci. 16: 745 – 755.
dc.identifier.citedreferenceMelloni, L., C. M. Schwiedrzik, E. Rodriguez, and W. Singer. 2009. (Micro)Saccades, corollary activity and cortical oscillations. Trends Cogn. Sci. 13: 239 – 245.
dc.identifier.citedreferenceMunk, M. H., and S. Neuenschwander. 2000. High‐frequency oscillations (20 to 120 Hz) and their role in visual processing. J. Clin. Neurophysiol. 17: 341 – 360.
dc.identifier.citedreferencePurves, D., J. A. Paydarfar, and T. J. Andrews. 1996. The wagon wheel illusion in movies and reality. Proc. Natl Acad. Sci. USA 93: 3693 – 3697.
dc.identifier.citedreferenceSchoutens, J. E. 2005. Dipole‐dipole interactions in microtubules. J. Biol. Phys. 31: 35 – 55.
dc.identifier.citedreferenceSchutz, A. C., D. I. Braun, and K. R. Gegenfurtner. 2011. Eye movements and perception: a selective review. J. Vis. 11: pii:  9.
dc.identifier.citedreferenceSzabo‐Salfay, O., J. Palhalmi, E. Szatmari, P. Barabas, N. Szilagyi, and G. Juhasz. 2001. The electroretinogram and visual evoked potential of freely moving rats. Brain Res. Bull. 56: 7 – 14.
dc.identifier.citedreferenceTort, A. B., R. W. Komorowski, J. R. Manns, N. J. Kopell, and H. Eichenbaum. 2009. Theta‐gamma coupling increases during the learning of item‐context associations. Proc. Natl Acad. Sci. USA 106: 20942 – 20947.
dc.identifier.citedreferenceWachtmeister, L. 1986. Spatial characteristics of the oscillatory potentials of the electroretinogram. Acta Ophthalmol. 64: 681 – 690.
dc.identifier.citedreferenceWilliams, R. A., C. H. Pollitz, J. C. Smith, and T. P. Williams. 1985. Flicker detection in the albino rat following light‐induced retinal damage. Physiol. Behav. 34: 259 – 266.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.