Show simple item record

Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source

dc.contributor.authorXu, Shaosui
dc.contributor.authorMitchell, David
dc.contributor.authorLiemohn, Michael
dc.contributor.authorDong, Chuanfei
dc.contributor.authorBougher, Stephen
dc.contributor.authorFillingim, Matthew
dc.contributor.authorLillis, Robert
dc.contributor.authorMcFadden, James
dc.contributor.authorMazelle, Christian
dc.contributor.authorConnerney, Jack
dc.contributor.authorJakosky, Bruce
dc.date.accessioned2016-10-17T21:16:39Z
dc.date.available2017-11-01T15:31:28Zen
dc.date.issued2016-09-16
dc.identifier.citationXu, Shaosui; Mitchell, David; Liemohn, Michael; Dong, Chuanfei; Bougher, Stephen; Fillingim, Matthew; Lillis, Robert; McFadden, James; Mazelle, Christian; Connerney, Jack; Jakosky, Bruce (2016). "Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source." Geophysical Research Letters 43(17): 8876-8884.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/134075
dc.description.abstractThe Mars Atmosphere and Volatile EvolutioN (MAVEN) mission samples the Mars ionosphere down to altitudes of ∼150 km over a wide range of local times and solar zenith angles. On 5 January 2015 (Orbit 520) when the spacecraft was in darkness at high northern latitudes (solar zenith angle, SZA >120°; latitude >60°), the Solar Wind Electron Analyzer (SWEA) instrument observed photoelectrons at altitudes below 200 km. Such observations imply the presence of closed crustal magnetic field loops that cross the terminator and extend thousands of kilometers to the deep nightside. This occurs over the weak northern crustal magnetic source regions, where the magnetic field has been thought to be dominated by draped interplanetary magnetic fields (IMF). Such a day‐night magnetic connectivity also provides a source of plasma and energy to the deep nightside. Simulations with the SuperThermal Electron Transport (STET) model show that photoelectron fluxes measured by SWEA precipitating onto the nightside atmosphere provide a source of ionization that can account for the O2+ density measured by the Suprathermal and Thermal Ion Composition (STATIC) instrument below 200 km. This finding indicates another channel for Martian energy redistribution to the deep nightside and consequently localized ionosphere patches and potentially aurora.Key PointsMAVEN SWEA instrument observed photoelectrons at altitudes below 200 km in deep nightsideIt suggests the presence of large cross‐terminator closed crustal magnetic field loops over the Martian northern hemisphereSuch topologies also provide new energy sources to the nightside ionosphere
dc.publisherWiley Periodicals, Inc.
dc.subject.otherweak crustal fields
dc.subject.othermagnetic topology
dc.subject.othernightside ionosphere
dc.subject.otherphotoelectrons
dc.subject.otherMars
dc.subject.otherMAVEN
dc.titleDeep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134075/1/grl54923.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134075/2/grl54923_am.pdf
dc.identifier.doi10.1002/2016GL070527
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceMantas, G. P., and W. B. Hanson ( 1979 ), Photoelectron fluxes in the Martian ionosphere, J. Geophys. Res., 84 ( A2 ), 369 – 385, doi: 10.1029/JA084iA02p00369.
dc.identifier.citedreferenceGurnett, D. A., et al. ( 2008 ), An overview of radar soundings of the Martian ionosphere from the Mars Express spacecraft, Adv. Space Res., 41, 1335 – 1346, doi: 10.1016/j.asr.2007.01.062.
dc.identifier.citedreferenceHaider, S. A., J. Kim, A. F. Nagy, C. N. Keller, M. I. Verigin, K. I. Gringauz, N. M. Shutte, K. Szego, and P. Kiraly ( 1992 ), Calculated ionization rates, ion densities, and airglow emission rates due to precipitating electrons in the nightside ionosphere of Mars, J. Geophys. Res., 97, 10,637 – 10,641, doi: 10.1029/92JA00317.
dc.identifier.citedreferenceHarada, Y., et al. ( 2016 ), Maven observations of energy‐time dispersed electron signatures in Martian crustal magnetic fields, Geophys. Res. Lett., 43, 939 – 944, doi: 10.1002/2015GL067040.
dc.identifier.citedreferenceHarnett, E. M., and R. M. Winglee ( 2005 ), Three‐dimensional fluid simulations of plasma asymmetries in the Martian magnetotail caused by the magnetic anomalies, J. Geophys. Res., 110, A07226, doi: 10.1029/2003JA010315.
dc.identifier.citedreferenceJakosky, B. M., et al. ( 2015 ), The Mars Atmosphere and Volatile Evolution (MAVEN) mission, Space Sci. Rev., 195 ( 1–4 ), 3 – 48, doi: 10.1007/s11214-015-0139-x.
dc.identifier.citedreferenceLiemohn, M. W., D. L. Mitchell, A. F. Nagy, J. L. Fox, T. W. Reimer, and Y. Ma ( 2003 ), Comparisons of electron fluxes measured in the crustal fields at Mars by the MGS magnetometer/electron reflectometer instrument with a B field‐dependent transport code, J. Geophys. Res., 108 ( E12 ), 5134, doi: 10.1029/2003JEOO215.
dc.identifier.citedreferenceLiemohn, M. W., et al. ( 2006a ), Numerical interpretation of high‐altitude photoelectron observations, Icarus, 182, 383 – 395, doi: 10.1016/j.icarus.2005.10.036.
dc.identifier.citedreferenceLiemohn, M. W., Y. Ma, R. A. Frahm, X. Fang, J. U. Kozyra, A. F. Nagy, J. D. Winningham, J. R. Sharber, S. Barabash, and R. Lundin ( 2006b ), Mars global MHD predictions of magnetic connectivity between the dayside ionosphere and the magnetospheric flanks, Space Sci. Rev., 126, 63 – 76, doi: 10.1007/s11214-006-9116-8.
dc.identifier.citedreferenceLiemohn, M. W., Y. Ma, A. Nagy, J. Kozyra, J. Winningham, R. Frahm, J. Sharber, S. Barabash, and R. Lundin ( 2007 ), Numerical modeling of the magnetic topology near Mars auroral observations, Geophys. Res. Lett., 34, L24202, doi: 10.1029/2007GL031806.
dc.identifier.citedreferenceLillis, R. J., D. L. Mitchell, R. P. Lin, and M. H. Acuña ( 2008a ), Electron reflectometry in the Martian atmosphere, Icarus, 194 ( 2 ), 544 – 561.
dc.identifier.citedreferenceLillis, R. J., H. V. Frey, M. Manga, D. L. Mitchell, R. P. Lin, M. H. Acuña, and S. W. Bougher ( 2008b ), Icarus, 194 ( 2 ), 575 – 596.
dc.identifier.citedreferenceLillis, R. J., M. O. Fillingim, L. M. Peticolas, D. A. Brain, R. P. Lin, and S. W. Bougher ( 2009 ), Nightside ionosphere of Mars: Modeling the effects of crustal magnetic fields and electron pitch angle distributions on electron impact ionization, J. Geophys. Res., 114, E11009, doi: 10.1029/2009JE003379.
dc.identifier.citedreferenceMa, Y. J., X. Fang, A. F. Nagy, C. T. Russell, and G. Toth ( 2014 ), Martian ionospheric responses to dynamic pressure enhancements in the solar wind, J. Geophys. Res. Space Physics, 119, 1272 – 1286, doi: 10.1002/2013JA019402.
dc.identifier.citedreferenceMcFadden, J., et al. ( 2015 ), MAVEN suprathermal and thermal ion compostion (static) instrument, Space Sci. Rev., 195 ( 1–4 ), 199 – 256.
dc.identifier.citedreferenceMitchell, D., R. Lin, H. Reme, D. Crider, P. Cloutier, J. Connerney, M. Acuña, and N. Ness ( 2000 ), Oxygen auger electrons observed in Mars’ ionosphere, Geophys. Res. Lett., 27 ( 13 ), 1871 – 1874.
dc.identifier.citedreferenceMitchell, D., R. Lin, C. Mazelle, H. Reme, P. Cloutier, J. Connerney, M. Acuña, and N. Ness ( 2001 ), Probing Mars’ crustal magnetic field and ionosphere with the MGS electron reflectometer, J. Geophys. Res., 106 ( E10 ), 23,419 – 23,427.
dc.identifier.citedreferenceMitchell, D., et al. ( 2016 ), The MAVEN solar wind electron analyzer, Space Sci. Rev., 200 ( 1–4 ), 495 – 528.
dc.identifier.citedreferenceMorschhauser, A., V. Lesur, and M. Grott ( 2014 ), A spherical harmonic model of the lithospheric magnetic field of Mars, J. Geophys. Res. Planets, 119, 1162 – 1188, doi: 10.1002/2013JE004555.
dc.identifier.citedreferenceNajib, D., A. F. Nagy, G. Tóth, and Y. Ma ( 2011 ), Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116, A05204, doi: 10.1029/2010JA016272.
dc.identifier.citedreferenceNěmec, F., D. Morgan, D. Gurnett, and F. Duru ( 2010 ), Nightside ionosphere of Mars: Radar soundings by the Mars express spacecraft, J. Geophys. Res., 115, E12009, doi: 10.1029/2010JE003663.
dc.identifier.citedreferenceSeth, S. P., S. A. Haider, and K. I. Oyama ( 2002 ), Photoelectron flux and nightglow emissions of 5577 and 6300 Å due to solar wind electron precipitation in Martian atmosphere, J. Geophys. Res., 107, 1324, doi: 10.1029/2001JA000261.
dc.identifier.citedreferenceSheehan, C. H., and J.‐P. St‐Maurice ( 2004 ), Dissociative recombination of N 2 +, O 2 +, and NO +: Rate coefficients for ground state and vibrationally excited ions, J. Geophys. Res., 109, A03302, doi: 10.1029/2003JA010132.
dc.identifier.citedreferenceSteckiewicz, M., et al. ( 2015 ), Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations, Geophys. Res. Lett., 42, 8877 – 8884, doi: 10.1002/2015GL065257.
dc.identifier.citedreferenceXu, S., and M. W. Liemohn ( 2015 ), Superthermal electron transport model for Mars, Earth Space Sci., 2 ( 3 ), 47 – 64, doi: 10.1002/2014EA000043.
dc.identifier.citedreferenceXu, S., M. W. Liemohn, and D. L. Mitchell ( 2014 ), Solar wind electron precipitation into the dayside Martian upper atmosphere through the cusps of strong crustal fields, J. Geophys. Res. Space Physics, 119, 10,100 – 10,115, doi: 10.1002/2014JA020363.
dc.identifier.citedreferenceXu, S., M. Liemohn, S. Bougher, and D. Mitchell ( 2015a ), Enhanced carbon dioxide may explain the dust‐storm‐related increase in high‐altitude photoelectron fluxes at Mars, Geophys. Res. Lett., 42, 9702 – 9710, doi: 10.1002/2015GL066043.
dc.identifier.citedreferenceXu, S., M. W. Liemohn, W. Peterson, J. Fontenla, and P. Chamberlin ( 2015b ), Comparison of different solar irradiance models for the superthermal electron transport model for Mars, Planet. Space Sci., 119, 62 – 68, doi: 10.1016/j.pss.2015.09.008.
dc.identifier.citedreferenceXu, S., M. Liemohn, S. Bougher, and D. Mitchell ( 2016 ), Martian high‐altitude photoelectrons independent of solar zenith angle, J. Geophys. Res. Space Physics, 3767 – 3780, doi: 10.1002/2015JA022149.
dc.identifier.citedreferenceZhang, M. H. G., J. G. Luhmann, and A. J. Kliore ( 1990 ), An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods, J. Geophys. Res., 95, 17,095 – 17,102, doi: 10.1029/JA095iA10p17095.
dc.identifier.citedreferenceAcuña, M., et al. ( 1992 ), Mars observer magnetic fields investigation, J. Geophys. Res., 97 ( E5 ), 7799 – 7814.
dc.identifier.citedreferenceAcuña, M., et al. ( 1998 ), Magnetic field and plasma observations at Mars: Initial results of the Mars global surveyor mission, Science, 279 ( 5357 ), 1676 – 1680.
dc.identifier.citedreferenceBarabash, S., et al. ( 2006 ), The Analyzer of Space Plasmas and Energetic Atoms (ASPERA‐3) for the Mars Express mission, Space Sci. Rev., 126 ( 1–4 ), 113 – 164.
dc.identifier.citedreferenceBougher, S., D. Pawlowski, J. Bell, S. Nelli, T. McDunn, J. Murphy, M. Chizek, and A. Ridley ( 2015 ), Mars global ionosphere‐thermosphere model: Solar cycle, seasonal, and diurnal variations of the Mars upper atmosphere, J. Geophys. Res. Planets, 120, 311 – 342, doi: 10.1002/2014JE004715.
dc.identifier.citedreferenceBrain, D., F. Bagenal, M. Acuña, and J. Connerney ( 2003 ), Martian magnetic morphology: Contributions from the solar wind and crust, J. Geophys. Res., 108 ( A12 ), 1424, doi: 10.1029/2002JA009482.
dc.identifier.citedreferenceBrain, D., J. Halekas, L. Peticolas, R. Lin, J. Luhmann, D. Mitchell, G. Delory, S. Bougher, M. Acuña, and H. Rème ( 2006a ), On the origin of aurora on Mars, Geophys. Res. Lett., 33, L01201, doi: 10.1029/2005GL024782.
dc.identifier.citedreferenceBrain, D., R. Lillis, D. Mitchell, J. Halekas, and R. Lin ( 2007 ), Electron pitch angle distributions as indicators of magnetic field topology near Mars, J. Geophys. Res., 112, A09201, doi: 10.1029/2007JA012435.
dc.identifier.citedreferenceBrain, D. A., D. L. Mitchell, and J. S. Halekas ( 2006b ), The magnetic field draping direction at Mars from April 1999 through August 2004, Icarus, 182 ( 2 ), 464 – 473.
dc.identifier.citedreferenceCoates, A. J., S. Tsang, A. Wellbrock, R. Frahm, J. Winningham, S. Barabash, R. Lundin, D. Young, and F. Crary ( 2011 ), Ionospheric photoelectrons: Comparing Venus, Earth, Mars and Titan, Planet. Space Sci., 59 ( 10 ), 1019 – 1027.
dc.identifier.citedreferenceCoates, A. J., et al. ( 2012 ), Cassini in Titan’s tail: Caps observations of plasma escape, J. Geophys. Res., 117, A05324, doi: 10.1029/2012JA017595.
dc.identifier.citedreferenceCoates, A. J., A. Wellbrock, R. Frahm, J. Winningham, A. Fedorov, S. Barabash, and R. Lundin ( 2015 ), Distant ionospheric photoelectron energy peak observations at Venus, Planet. Space Sci., 113, 378 – 384.
dc.identifier.citedreferenceConnerney, J., M. Acuña, N. Ness, G. Kletetschka, D. Mitchell, R. Lin, and H. Reme ( 2005 ), Tectonic implications of Mars crustal magnetism, Proceedings of the national Academy of Sciences of the United States of America, 102 ( 42 ), 14,970 – 14,975.
dc.identifier.citedreferenceConnerney, J., J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliversen, and D. Sheppard ( 2015 ), The MAVEN magnetic field investigation, Space Sci. Rev., 195, 257 – 291.
dc.identifier.citedreferenceDong, C., S. W. Bougher, Y. Ma, G. Toth, A. F. Nagy, and D. Najib ( 2014 ), Solar wind interaction with Mars upper atmosphere: Results from the one‐way coupling between the multifluid MHD model and the MTGCM model, Geophys. Res. Lett., 41, 2708 – 2715, doi: 10.1002/2014GL059515.
dc.identifier.citedreferenceDong, C., S. W. Bougher, Y. Ma, G. Toth, Y. Lee, A. F. Nagy, V. Tenishev, D. J. Pawlowski, M. R. Combi, and D. Najib ( 2015 ), Solar wind interaction with the Martian upper atmosphere: Crustal field orientation, solar cycle, and seasonal variations, J. Geophys. Res. Space Physics, 120, 7857 – 7872, doi: 10.1002/2015JA020990.
dc.identifier.citedreferenceDuru, F., D. Gurnett, D. Morgan, J. Winningham, R. Frahm, and A. Nagy ( 2011 ), Nightside ionosphere of Mars studied with local electron densities: A general overview and electron density depressions, J. Geophys. Res., 116, A10316, doi: 10.1029/2011JA016835.
dc.identifier.citedreferenceFillingim, M., L. Peticolas, R. Lillis, D. Brain, J. Halekas, D. Lummerzheim, and S. Bougher ( 2010 ), Localized ionization patches in the nighttime ionosphere of Mars and their electrodynamic consequences, Icarus, 206 ( 1 ), 112 – 119.
dc.identifier.citedreferenceFillingim, M. O., L. M. Peticolas, R. J. Lillis, D. A. Brain, J. S. Halekas, D. L. Mitchell, R. P. Lin, D. Lummerzheim, S. W. Bougher, and D. L. Kirchner ( 2007 ), Model calculations of electron precipitation induced ionization patches on the nightside of Mars, Geophys. Res. Lett., 34, L12101, doi: 10.1029/2007GL029986.
dc.identifier.citedreferenceFox, J. L. ( 1993 ), The production and escape of nitrogen atoms on Mars, J. Geophys. Res., 98 ( E2 ), 3297 – 3310.
dc.identifier.citedreferenceFox, J. L., J. F. Brannon, and H. S. Porter ( 1993 ), Upper limits to the nightside ionosphere of Mars, Geophys. Res. Lett., 20, 1339 – 1342, doi: 10.1029/93GL01349.
dc.identifier.citedreferenceFrahm, R., et al. ( 2006 ), Carbon dioxide photoelectron energy peaks at Mars, Icarus, 182 ( 2 ), 371 – 382.
dc.identifier.citedreferenceFrahm, R., et al. ( 2010 ), Estimation of the escape of photoelectrons from Mars in 2004 liberated by the ionization of carbon dioxide and atomic oxygen, Icarus, 206 ( 1 ), 50 – 63.
dc.identifier.citedreferenceGonzález‐Galindo, F., J.‐Y. Chaufray, M. López‐Valverde, G. Gilli, F. Forget, F. Leblanc, R. Modolo, S. Hess, and M. Yagi ( 2013 ), Three‐dimensional Martian ionosphere model: I. The photochemical ionosphere below 180 km, J. Geophys. Res. Planets, 118, 2105 – 2123, doi: 10.1002/jgre.20150.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.