Show simple item record

Intense energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with high‐resolution observations from MESSENGER

dc.contributor.authorBaker, Daniel N.
dc.contributor.authorDewey, Ryan M.
dc.contributor.authorLawrence, David J.
dc.contributor.authorGoldsten, John O.
dc.contributor.authorPeplowski, Patrick N.
dc.contributor.authorKorth, Haje
dc.contributor.authorSlavin, James A.
dc.contributor.authorKrimigis, Stamatios M.
dc.contributor.authorAnderson, Brian J.
dc.contributor.authorHo, George C.
dc.contributor.authorMcNutt, Ralph L.
dc.contributor.authorRaines, Jim M.
dc.contributor.authorSchriver, David
dc.contributor.authorSolomon, Sean C.
dc.date.accessioned2016-10-17T21:16:53Z
dc.date.available2017-05-02T15:09:13Zen
dc.date.issued2016-03
dc.identifier.citationBaker, Daniel N.; Dewey, Ryan M.; Lawrence, David J.; Goldsten, John O.; Peplowski, Patrick N.; Korth, Haje; Slavin, James A.; Krimigis, Stamatios M.; Anderson, Brian J.; Ho, George C.; McNutt, Ralph L.; Raines, Jim M.; Schriver, David; Solomon, Sean C. (2016). "Intense energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with high‐resolution observations from MESSENGER." Journal of Geophysical Research: Space Physics 121(3): 2171-2184.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134085
dc.description.abstractThe MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission to Mercury has provided a wealth of new data about energetic particle phenomena. With observations from MESSENGER’s Energetic Particle Spectrometer, as well as data arising from energetic electrons recorded by the X‐Ray Spectrometer and Gamma‐Ray and Neutron Spectrometer (GRNS) instruments, recent work greatly extends our record of the acceleration, transport, and loss of energetic electrons at Mercury. The combined data sets include measurements from a few keV up to several hundred keV in electron kinetic energy and have permitted relatively good spatial and temporal resolution for many events. We focus here on the detailed nature of energetic electron bursts measured by the GRNS system, and we place these events in the context of solar wind and magnetospheric forcing at Mercury. Our examination of data at high temporal resolution (10 ms) during the period March 2013 through October 2014 supports strongly the view that energetic electrons are accelerated in the near‐tail region of Mercury’s magnetosphere and are subsequently “injected” onto closed magnetic field lines on the planetary nightside. The electrons populate the plasma sheet and drift rapidly eastward toward the dawn and prenoon sectors, at times executing multiple complete drifts around the planet to form “quasi‐trapped” populations.Key PointsShows where energetic particles are accelerated at MercuryDemonstrates quasi‐trapping of energetic electronsAnswers decades‐old questions about Mercury substorms
dc.publisherJohns Hopkins Univ. Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMercury magnetosphere
dc.subject.otherparticle bursts
dc.subject.othersubstorms
dc.subject.otherelectron acceleration
dc.titleIntense energetic electron flux enhancements in Mercury’s magnetosphere: An integrated view with high‐resolution observations from MESSENGER
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134085/1/jgra52378.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134085/2/jgra52378_am.pdf
dc.identifier.doi10.1002/2015JA021778
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceImber, S. M., J. A. Slavin, S. A. Boarden, B. J. Anderson, H. Korth, R. L. McNutt Jr., and S. C. Solomon ( 2014 ), MESSENGER observations of large dayside flux transfer events: Do they drive Mercury’s substorm cycle?, J. Geophys. Res. Space Physics, 119, 5613 – 5623, doi: 10.1002/2014JA019884.
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The Energetic Particle and Plasma Spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556, doi: 10.1007/s11214-007-9272-5.
dc.identifier.citedreferenceArmstrong, T. P., S. M. Krimigis, and L. J. Lanzerotti ( 1975 ), A reinterpretation of the reported energetic particle fluxes in the vicinity of Mercury, J. Geophys. Res., 80, 4015 – 4017, doi: 10.1029/JA080i028p04015.
dc.identifier.citedreferenceBaker, D. N., J. A. Simpson, and J. H. Eraker ( 1986 ), A model of impulsive acceleration and transport of energetic particles in Mercury’s magnetosphere, J. Geophys. Res., 91, 8742 – 8748, doi: 10.1029/JA091iA08p08742.
dc.identifier.citedreferenceBaker, D. N., J. E. Borovsky, J. O. Burns, G. R. Gisler, and M. Zeilik ( 1987 ), Possible calorimetric effects at Mercury due to solar wind magnetosphere interactions, J. Geophys. Res., 92, 4707 – 4712, doi: 10.1029/JA092iA05p04707.
dc.identifier.citedreferenceBaker, D. N., T. I. Pulkkinen, V. Angelopoulos, W. Baumjohann, and R. L. McPherron ( 1996 ), Neutral line model of substorms: Past results and present view, J. Geophys. Res., 101, 12,975 – 13,010, doi: 10.1029/95JA03753.
dc.identifier.citedreferenceBaker, D. N., et al. ( 2009 ), Space environment of Mercury at the time of the first MESSENGER flyby: Solar wind and interplanetary magnetic field modeling of upstream conditions, J. Geophys. Res., 114, A10101, doi: 10.1029/2009JA014287.
dc.identifier.citedreferenceBaker, D. N., et al. ( 2013 ), Solar wind forcing at Mercury, WSA‐ENLIL model results, J. Geophys. Res. Space Physics, 118, 45 – 57, doi: 10.1029/2012JA018064.
dc.identifier.citedreferenceBirn, J., A. V. Artemyev, D. N. Baker, M. Echim, M. Hoshino, and L. M. Zelenyi ( 2012 ), Particle acceleration in the magnetotail and aurora, Space Sci. Rev., 173, 49 – 102, doi: 10.1007/s11214-012-9874-4.
dc.identifier.citedreferenceChriston, S. P., J. Feynman, and J. A. Slavin ( 1987 ), Dynamic substorm injections: Similar magnetospheric phenomena at Earth and Mercury, in Magnetotail Physics, edited by A. T. Y. Lui, pp. 393 – 400, Johns Hopkins Univ. Press, Baltimore, Md.
dc.identifier.citedreferenceDiBraccio, G. A., J. A. Slavin, S. A. Boardsen, B. J. Anderson, H. Korth, T. H. Zurbuchen, J. M. Raines, D. N. Baker, R. L. McNutt Jr., and S. C. Solomon ( 2013 ), MESSENGER observations of magnetopause structure and dynamics at Mercury, J. Geophys. Res. Space Physics, 118, 997 – 1008, doi: 10.1002/jgra.50123.
dc.identifier.citedreferenceDiBraccio, G. A., et al. ( 2015 ), MESSENGER observations of flux ropes in Mercury’s magnetotail, Planet. Space Sci., 115, 77 – 89, doi: 10.1016/j.pss.2014.12.016.
dc.identifier.citedreferenceDrake, J. F., M. Swisdak, H. Che, and M. S. Shay ( 2006 ), Electron acceleration from contracting magnetic islands during reconnection, Nature, 443, 553 – 556, doi: 10.1038/nature05116.
dc.identifier.citedreferenceEraker, J. H., and J. A. Simpson ( 1986 ), Acceleration of charged particles in Mercury’s magnetosphere, J. Geophys. Res., 91, 9973 – 9993, doi: 10.1029/JA091iA09p09973.
dc.identifier.citedreferenceGoldsten, J. O., et al. ( 2007 ), The MESSENGER Gamma‐Ray and Neutron Spectrometer, Space Sci. Rev., 131, 339 – 391, doi: 10.1007/s11214-007-9262-7.
dc.identifier.citedreferenceHo, G. C., et al. ( 2011a ), MESSENGER observations of transient bursts of energetic electrons in Mercury’s magnetosphere, Science, 333, 1865 – 1868, doi: 10.1126/science.1211141.
dc.identifier.citedreferenceHo, G. C., R. D. Starr, R. E. Gold, S. M. Krimigis, J. A. Slavin, D. N. Baker, B. J. Anderson, R. L. McNutt Jr., L. R. Nittler, and S. C. Solomon ( 2011b ), Observations of suprathermal electrons in Mercury’s magnetosphere during the three MESSENGER flybys, Planet. Space Sci., 59, 2016 – 2025.
dc.identifier.citedreferenceHo, G. C., S. M. Krimigis, R. E. Gold, D. N. Baker, B. J. Anderson, H. Korth, J. A. Slavin, R. L. McNutt Jr., R. M. Winslow, and S. C. Solomon ( 2012 ), Spatial distribution and spectral characteristics of energetic electrons in Mercury’s magnetosphere, J. Geophys. Res., 117, A00M04, doi: 10.1029/2012JA017983.
dc.identifier.citedreferenceHoshino, M. ( 2005 ), Electron surging in magnetic reconnection, J. Geophys. Res., 110, A10215, doi: 10.1029/2005JA011229.
dc.identifier.citedreferenceKorth, H., B. J. Anderson, D. J. Gershman, J. M. Raines, J. A. Slavin, T. H. Zurbuchen, S. C. Solomon, and R. L. McNutt Jr. ( 2014 ), Plasma distribution in Mercury’s magnetosphere derived from MESSENGER Magnetometer and Fast Imaging Plasma Spectrometer observations, J. Geophys. Res. Space Physics, 119, 2917 – 2932, doi: 10.1002/2013JA019567.
dc.identifier.citedreferenceLawrence, D. J., et al. ( 2015 ), Comprehensive survey of energetic electron events in Mercury’s magnetosphere with data from the MESSENGER Gamma‐Ray and Neutron Spectrometer, J. Geophys. Res. Space Physics, 120, 2851 – 2876, doi: 10.1002/2014JA020792.
dc.identifier.citedreferenceSimpson, J. A., J. H. Eraker, J. E. Lamport, and P. H. Walpole ( 1974 ), Electrons and protons accelerated in Mercury’s magnetic field, Science, 185, 160 – 166.
dc.identifier.citedreferenceSiscoe, G. L., N. F. Ness, and C. M. Yeates ( 1975 ), Substorms on Mercury?, J. Geophys. Res., 80, 4359 – 4363, doi: 10.1029/JA080i031po4359.
dc.identifier.citedreferenceSlavin, J. A., and R. E. Holzer ( 1979 ), The role of erosion on the solar wind stand‐off distance at Mercury, J. Geophys. Res., 84, 2076 – 2082, doi: 10.1029/JA084iA05p02076.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2007 ), MESSENGER: Exploring Mercury’s magnetosphere, Space Sci. Rev., 131, 133 – 160, doi: 10.1007/s1/214-007-9154-x.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2009 ), MESSENGER observations of magnetic reconnection in Mercury’s magnetosphere, Science, 324, 606 – 610, doi: 10.1126/science.1172011.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2010 ), MESSENGER observations of extreme loading and unloading of Mercury’s magnetic tail, Science, 329, 665 – 668, doi: 10.1126/science.1188067.
dc.identifier.citedreferenceSlavin, J. A., et al. ( 2014 ), MESSENGER observations of Mercury’s dayside magnetosphere under extreme solar wind conditions, J. Geophys. Res. Space Physics, 119, 8087 – 8116, doi: 10.1002/2014JA020319.
dc.identifier.citedreferenceStarr, R. D., D. Schriver, L. R. Nittler, S. Z. Weider, P. K. Byrne, G. C. Ho, E. A. Rhodes, C. E. Schlemm II, S. C. Solomon, and P. M. Trávníček ( 2012 ), MESSENGER detection of electron‐induced X‐ray fluorescence from Mercury’s surface, J. Geophys. Res., 117, E00L02, doi: 10.1029/2012JE004118.
dc.identifier.citedreferenceSun, W.‐J., et al. ( 2015 ), MESSENGER observations of magnetospheric substorm activity in Mercury’s near magnetotail, Geophys. Res. Lett, 42, 3692 – 3699, doi: 10.1002/2015GL064052.
dc.identifier.citedreferenceSundberg, T., et al. ( 2012 ), MESSENGER observations of dipolarization events in Mercury’s magnetotail, J. Geophys. Res., 22, A00M03, doi: 10.1029/2012JA017756.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.