Show simple item record

Do we know the actual magnetopause position for typical solar wind conditions?

dc.contributor.authorSamsonov, A. A.
dc.contributor.authorGordeev, E.
dc.contributor.authorTsyganenko, N. A.
dc.contributor.authorŠafránková, J.
dc.contributor.authorNěmeček, Z.
dc.contributor.authorŠimůnek, J.
dc.contributor.authorSibeck, D. G.
dc.contributor.authorTóth, G.
dc.contributor.authorMerkin, V. G.
dc.contributor.authorRaeder, J.
dc.date.accessioned2016-10-17T21:16:56Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationSamsonov, A. A.; Gordeev, E.; Tsyganenko, N. A.; Šafránková, J. ; Němeček, Z. ; Šimůnek, J. ; Sibeck, D. G.; Tóth, G. ; Merkin, V. G.; Raeder, J. (2016). "Do we know the actual magnetopause position for typical solar wind conditions?." Journal of Geophysical Research: Space Physics 121(7): 6493-6508.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134087
dc.description.abstractWe compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter >1 RE) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than nonaxisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global nonaxisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the nonaxisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreases of the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for Bz=0. Therefore, we assume that these predictions indicate the actual magnetopause position, but future investigations are still needed.Key PointsEmpirical models predict significantly different magnetopause positions even at the subsolar pointAxisymmetric empirical models predict the magnetopause closer to the Earth than nonaxisymmetric empirical models for zero tilt angleResults of MHD models with the ring current magnetic field lie close to results of the nonaxisymmetric Lin et al. model
dc.publisherWiley Periodicals, Inc.
dc.publisherKluwer Acad.
dc.subject.otherMHD modeling
dc.subject.othermagnetopause
dc.titleDo we know the actual magnetopause position for typical solar wind conditions?
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134087/1/jgra52758_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134087/2/jgra52758.pdf
dc.identifier.doi10.1002/2016JA022471
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSibeck, D. G., R. E. Lopez, and E. C. Roelof ( 1991 ), Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96 ( A4 ), 5489 â 5495, doi: 10.1029/90JA02464.
dc.identifier.citedreferenceSamsonov, A. A., O. Alexandrova, C. Lacombe, M. Maksimovic, and S. P. Gary ( 2007 ), Proton temperature anisotropy in the magnetosheath: Comparison of 3â D MHD modelling with Cluster data, Ann. Geophys., 25, 1157 â 1173.
dc.identifier.citedreferenceSamsonov, A. A., Z. NÄ meÄ ek, J. Å afránková, and K. Jelínek ( 2012 ), Why does the subsolar magnetopause move sunward for radial interplanetary magnetic field?, J. Geophys. Res., 117, A05221, doi: 10.1029/2011JA017429.
dc.identifier.citedreferenceSchield, M. A. ( 1969a ), Pressure balance between solar wind and magnetosphere, J. Geophys. Res., 74 ( 5 ), 1275 â 1286, doi: 10.1029/JA074i005p01275.
dc.identifier.citedreferenceSchield, M. A. ( 1969b ), Correction to paper by Milo A. Schield, â Pressure balance between solar wind and magnetosphereâ , J. Geophys. Res., 74 ( 21 ), 5189 â 5190, doi: 10.1029/JA074i021p05189.
dc.identifier.citedreferenceShue, J.â H., et al. ( 1998 ), Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17,691 â 17,700, doi: 10.1029/98JA01103.
dc.identifier.citedreferenceShue, J.â H., and J.â K. Chao ( 2013 ), The role of enhanced thermal pressure in the earthward motion of the Earth’s magnetopause, J. Geophys. Res. Space Physics, 118, 3017 â 3026, doi: 10.1002/jgra.50290.
dc.identifier.citedreferenceShukhtina, M. A., and E. Gordeev ( 2015 ), In situ magnetotail magnetic flux calculation, Ann. Geophys., 33, 769 â 781, doi: 10.5194/angeoâ 33â 769â 2015.
dc.identifier.citedreferenceSotirelis, T., and C.â I. Meng ( 1999 ), Magnetopause from pressure balance, J. Geophys. Res., 104 ( A4 ), 6889 â 6898, doi: 10.1029/1998JA900119.
dc.identifier.citedreferenceSpreiter, J. R., and B. R. Briggs ( 1962 ), Theoretical determination of the form of the boundary of the solar corpuscular stream produced by interaction with the magnetic dipole field of the Earth, J. Geophys. Res., 67 ( 1 ), 37 â 51, doi: 10.1029/JZ067i001p00037.
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, 223 â 253, doi: 10.1016/0032â 0633(66)90124â 3.
dc.identifier.citedreferenceSuvorova, A. V., and A. V. Dmitriev ( 2015 ), Magnetopause inflation under radial IMF: Comparison of models, Earth Space Sci., 2, 107 â 114, doi: 10.1002/2014EA000084.
dc.identifier.citedreferenceSuvorova, A. V., et al. ( 2010 ), Magnetopause expansions for quasiâ radial interplanetary magnetic field: THEMIS and Geotail observations, J. Geophys. Res., 115, A10216, doi: 10.1029/2010JA015404.
dc.identifier.citedreferenceTanaka, T. ( 1994 ), Finite volume TVD scheme on an unstructured grid system for threeâ dimensional MHD simulations of inhomogeneous systems including strong background potential field, J. Comp. Phys., 111, 381 â 389, doi: 10.1006/jcph.1994.1071.
dc.identifier.citedreferenceToffoletto, F. R., S. Sazykin, R. W. Spiro, and R. A. Wolf ( 2003 ), Modeling the inner magnetosphere using the Rice Convection Model (review), Space Sci. Rev., 108, 175 â 196.
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 â 903, doi: 10.1016/j.jcp.2011.02.006.
dc.identifier.citedreferenceTsyganenko, N. A., and D. G. Sibeck ( 1994 ), Concerning flux erosion from the dayside magnetosphere, J. Geophys. Res., 99 ( A7 ), 13,425 â 13,436, doi: 10.1029/94JA00719.
dc.identifier.citedreferenceTsyganenko, N. A. ( 1995 ), Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause, J. Geophys. Res., 100 ( A4 ), 5599 â 5612, doi: 10.1029/94JA03193.
dc.identifier.citedreferenceTsyganenko, N. A. ( 1996 ), Effects of the solar wind conditions on the global magnetospheric configuration as deduced from dataâ based field models, in Proceedings of the 3rd International Conference Held in Versailles, pp. 181 â 185, European Space Agency Publication, ESA SPâ 389, Paris.
dc.identifier.citedreferenceTsyganenko, N. A., and M. I. Sitnov ( 2005 ), Modeling the dynamics of the inner magnetosphere during strong geomagnetic storms, J. Geophys. Res., 110, A03208, doi: 10.1029/2004JA010798.
dc.identifier.citedreferenceTsyganenko, N. A., and V. A. Andreeva ( 2015 ), A forecasting model of the magnetosphere driven by an optimal solar wind coupling function, J. Geophys. Res. Space Physics, 120, 8401 â 8425, doi: 10.1002/2015JA021641.
dc.identifier.citedreferenceWang, Y., D. G. Sibeck, J. Merka, S. A. Boardsen, H. Karimabadi, T. B. Sipes, J. Å afránková, K. Jelínek, and R. Lin ( 2013 ), A new threeâ dimensional magnetopause model with a support vector regression machine and a large database of multiple spacecraft observations, J. Geophys. Res. Space Physics, 118, 2173 â 2184, doi: 10.1002/jgra.50226.
dc.identifier.citedreferenceWolf, R. A., R. W. Spiro, and F. J. Rich ( 1991 ), Extension of the Rice Convection Model into the highâ latitude ionosphere, J. Atm. Terrest. Phys., 53, 817 â 829.
dc.identifier.citedreferenceXi, S., W. Lotko, B. Zhang, O. J. Brambles, J. G. Lyon, V. G. Merkin, and M. Wiltberger ( 2015 ), Poynting fluxâ conserving lowâ altitude boundary conditions for global magnetospheric models, J. Geophys. Res. Space Physics, 120, 384 â 400, doi: 10.1002/2014JA020470.
dc.identifier.citedreferenceZhigulev, V. N., and E. A. Romishevskii ( 1959 ), Concerning the interaction of currents flowing in a conducting medium with the Earth’s magnetic field, Soviet Phys. Doklady, 5, 1001 â 1004, (Eng. Trans. 1960, 4, 859â 862).
dc.identifier.citedreferenceAndreeva, V. A., and N. A. Tsyganenko ( 2016 ), Reconstructing the magnetosphere from data using radial basis functions, J. Geophys. Res. Space Physics, 121, 2249 â 2263, doi: 10.1002/2015JA022242.
dc.identifier.citedreferenceBeard, D. B. ( 1960 ), The interaction of the terrestrial magnetic field with the solar corpuscular radiation, J. Geophys. Res., 65 ( 11 ), 3559 â 3568, doi: 10.1029/JZ065i011p03559.
dc.identifier.citedreferenceBoardsen, S. A., T. E. Eastman, T. Sotirelis, and J. L. Green ( 2000 ), An empirical model of the highâ latitude magnetopause, J. Geophys. Res., 105 ( A10 ), 23,193 â 23,219, doi: 10.1029/1998JA000143.
dc.identifier.citedreferenceBrackbill, J. U., and D. C. Barnes ( 1980 ), The effect of nonzero â · B on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys., 35, 426 â 430, doi: 10.1016/0021â 9991(80)90079â 0.
dc.identifier.citedreferenceChapman, S., and V. C. A. Ferraro ( 1931 ), A new theory of magnetic storms, Terr. Magn. Atmos. Electr., 36 ( 2 ), 77 â 97, doi: 10.1029/TE036i002p00077.
dc.identifier.citedreferenceDe Zeeuw, D., S. Sazykin, R. Wolf, T. Gombosi, A. Ridley, and G. Toth ( 2004 ), Coupling of a global MHD code and an inner magnetosphere model: Initial results, J. Geophys. Res., 109, A12219, doi: 10.1029/2003JA010366.
dc.identifier.citedreferenceDmitriev, A. V., and A. V. Suvorova ( 2000 ), Threeâ dimensional artificial neural network model of the dayside magnetopause, J. Geophys. Res., 105, 18,909 â 18,918, doi: 10.1029/2000JA900008.
dc.identifier.citedreferenceDungey, I. W. ( 1961 ), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47 â 48.
dc.identifier.citedreferenceElsen, R. K., and R. M. Winglee ( 1997 ), The average shape of the Magnetopause: A comparison of threeâ dimensional global MHD and empirical models, J. Geophys. Res., 102 ( A3 ), 4799 â 4819, doi: 10.1029/96JA03518.
dc.identifier.citedreferenceFairfield, D. H. ( 1971 ), Average and unusual locations of the Earth’s magnetopause and bow shock, J. Geophys. Res., 76 ( 28 ), 6700 â 6716, doi: 10.1029/JA076i028p06700.
dc.identifier.citedreferenceFairfield, D. H., W. Baumjohann, G. Paschmann, H. Lühr, and D. G. Sibeck ( 1990 ), Upstream pressure variations associated with the bow shock and their effects on the magnetosphere, J. Geophys. Res., 95 ( A4 ), 3773 â 3786, doi: 10.1029/JA095iA04p03773.
dc.identifier.citedreferenceFok, M., R. A. Wolf, R. W. Spiro, and T. E. Moore ( 2001 ), Comprehensive computational model of Earth’s ring current, J. Geophys. Res., 106, 8417 â 8424, doi: 10.1029/2000JA000235.
dc.identifier.citedreferenceGarcía, K. S., and W. J. Hughes ( 2007 ), Finding the Lyonâ Fedderâ Mobarry magnetopause: A statistical perspective, J. Geophys. Res., 112, A06229, doi: 10.1029/2006JA012039.
dc.identifier.citedreferenceGlocer, A., M. Fok, X. Meng, G. Tóth, N. Buzulukova, S. Chen, and K. Lin ( 2013 ), CRCM + BATSâ Râ US twoâ way coupling, J. Geophys. Res. Space Physics, 118, 1635 â 1650, doi: 10.1002/jgra.50221.
dc.identifier.citedreferenceGombosi, T. I., G. Tóth, D. L. De Zeeuw, K. C. Hansen, K. Kabin, and K. G. Powell ( 2002 ), Semirelativistic magnetohydrodynamics and physicsâ based convergence acceleration, J. Comput. Phys., 177, 176 â 205, doi: 10.1006/jcph.2002.7009.
dc.identifier.citedreferenceGordeev, E., V. Sergeev, I. Honkonen, M. Kuznetsova, L. Rastätter, M. Palmroth, P. Janhunen, G. Tóth, J. Lyon, and M. Wiltberger ( 2015 ), Assessing the performance of communityâ available global MHD models using key system parameters and empirical relationships, Space Weather, 13, 868 â 884, doi: 10.1002/2015SW001307.
dc.identifier.citedreferenceHayosh, M., Z. NÄ meÄ ek, J. Å afránková, and G. N. Zastenker ( 2005 ), Variations of the magnetosheath ion flux and geomagnetic activity, Adv. Space Res., 36 ( 12 ), 2417 â 2422, doi: 10.1016/j.asr.2003.08.082.
dc.identifier.citedreferenceHill, T. W., and M. E. Rassbach ( 1975 ), Interplanetary magnetic field direction and the configuration of the dayside magnetosphere, J. Geophys. Res., 80 ( 1 ), 1 â 6, doi: 10.1029/JA080i001p00001.
dc.identifier.citedreferenceKirpichev, I. P., and E. E. Antonova ( 2014 ), Estimation of the current density and analysis of the geometry of the current system surrounding the Earth, Cosmic Res., 52, 52 â 60, doi: 10.1134/S0010952514010043.
dc.identifier.citedreferenceKovner, M. S., and Y. I. Feldstein ( 1973 ), On solar wind interaction with the Earth’s magnetosphere, Planet. Space Sci., 21, 1191 â 1211, doi: 10.1016/0032â 0633(73)90206â 7.
dc.identifier.citedreferenceKuznetsov, S. N., and A. V. Suvorova ( 1998 ), An empirical model of the magnetopause for broad ranges of solar wind pressure and B z IMF, in Polar Cap Boundary Phenomena, edited by J. Moen, A. Egeland, and M. Lockwood, pp. 51 â 61, Kluwer Acad., Norwell, Mass.
dc.identifier.citedreferenceLin, R. L., X. X. Zhang, S. Q. Liu, Y. L. Wang, and J. C. Gong ( 2010 ), A threeâ dimensional asymmetric magnetopause model, J. Geophys. Res., 115, A04207, doi: 10.1029/2009JA014235.
dc.identifier.citedreferenceLu, J. Y., Z.â Q. Liu, K. Kabin, M. X. Zhao, D. D. Liu, Q. Zhou, and Y. Xiao ( 2011 ), Threeâ dimensional shape of the magnetopause: Global MHD results, J. Geophys. Res., 116, A09237, doi: 10.1029/2010JA016418.
dc.identifier.citedreferenceLyon, J. G., J. A. Fedder, and C. M. Mobarry ( 2004 ), The Lyonâ Fedderâ Mobarry (LFM) global MHD magnetospheric simulation code, J. Atmos. Sol. Terr. Phys., 66, 1333 â 1350, doi: 10.1016/j.jastp.2004.03.020.
dc.identifier.citedreferenceMaltsev, Y. P., and W. B. Lyatsky ( 1975 ), Field aligned currents and erosion of the dayside magnetosphere, Planet. Space Sci., 23, 1257 â 1260, doi: 10.1016/0032â 0633(75)90149â X.
dc.identifier.citedreferenceMead, G. D. ( 1964 ), Deformation of the geomagnetic field by the solar wind, J. Geophys. Res., 69 ( 7 ), 1181 â 1195, doi: 10.1029/JZ069i007p01181.
dc.identifier.citedreferenceMead, G. D., and D. B. Beard ( 1964 ), Shape of the geomagnetic field solar wind boundary, J. Geophys. Res., 69 ( 7 ), 1169 â 1179, doi: 10.1029/JZ069i007p01169.
dc.identifier.citedreferenceMeng, X., G. Tóth, A. Glocer, M.â C. Fok, and T. I. Gombosi ( 2013 ), Pressure anisotropy in global magnetospheric simulations: Coupling with ring current models, J. Geophys. Res. Space Physics, 118, 5639 â 5658, doi: 10.1002/jgra.50539.
dc.identifier.citedreferenceMerkin, V. G., and J. G. Lyon ( 2010 ), Effects of the lowâ latitude inospheric boundary condition on the global magnetosphere, J. Geophys. Res., 115, A10202, doi: 10.1029/2010JA015461.
dc.identifier.citedreferenceMerkin, V. G., J. G. Lyon, and S. G. Claudepierre ( 2013 ), Kelvinâ Helmholtz instability of the magnetospheric boundary in a threeâ dimensional global MHD simulation during northward IMF conditions, J. Geophys. Res. Space Physics, 118, 5478 â 5496, doi: 10.1002/jgra.50520.
dc.identifier.citedreferenceOlson, W. P. ( 1969 ), The shape of the tilted magnetopause, J. Geophys. Res., 74 ( 24 ), 5642 â 5651, doi: 10.1029/JA074i024p05642.
dc.identifier.citedreferencePalmroth, M., T. I. Pulkkinen, P. Janhunen, and C.â C. Wu ( 2003 ), Stormtime energy transfer in global MHD simulation, J. Geophys. Res., 108 ( A1 ), 1048, doi: 10.1029/2002JA009446.
dc.identifier.citedreferencePembroke, A., F. Toffoletto, S. Sazykin, M. Wiltberger, J. Lyon, V. Merkin, and P. Schmitt ( 2012 ), Initial results from a dynamic coupled magnetosphereâ ionosphereâ ring current model, J. Geophys. Res., 117, A02211, doi: 10.1029/2011JA016979.
dc.identifier.citedreferencePetrinec, S. M., and C. T. Russell ( 1996 ), Nearâ Earth magnetotail shape and size as determined from the magnetopause flaring angle, J. Geophys. Res., 101, 137 â 152, doi: 10.1029/95JA02834.
dc.identifier.citedreferencePhan, T.â D., G. Paschmann, W. Baumjohann, N. Sckopke, and H. Lühr ( 1994 ), The magnetosheath region adjacent to the dayside magnetopause: AMPTE/IRM observations, J. Geophys. Res., 99 ( A1 ), 121 â 141, doi: 10.1029/93JA02444.
dc.identifier.citedreferencePudovkin, M. I., N. A. Tsyganenko, and A. V. Usmanov ( 1986 ), The influence of longitudinal currents on the magnetopause on the structure and position of polar cusps, Geomagn. Aeron., 26, 801 â 805.
dc.identifier.citedreferencePudovkin, M. I., B. P. Besser, and S. A. Zaitseva ( 1998 ), Magnetopause standâ off distance in dependence on the magnetosheath and solar wind parameters, Ann. Geophys., 16, 388 â 396.
dc.identifier.citedreferenceRaeder, J., et al. ( 2001 ), Global simulation of the Geospace Environment Modeling substorm challenge event, J. Geophys. Res., 106, 381 â 395, doi: 10.1029/2000JA000605.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.