Show simple item record

Association Between Absolute Neutrophil Count and Variation at TCIRG1: The NHLBI Exome Sequencing Project

dc.contributor.authorRosenthal, Elisabeth A.
dc.contributor.authorMakaryan, Vahagn
dc.contributor.authorBurt, Amber A.
dc.contributor.authorCrosslin, David R.
dc.contributor.authorKim, Daniel Seung
dc.contributor.authorSmith, Joshua D.
dc.contributor.authorNickerson, Deborah A.
dc.contributor.authorReiner, Alex P.
dc.contributor.authorRich, Stephen S.
dc.contributor.authorJackson, Rebecca D.
dc.contributor.authorGanesh, Santhi K.
dc.contributor.authorPolfus, Linda M.
dc.contributor.authorQi, Lihong
dc.contributor.authorDale, David C.
dc.contributor.authorJarvik, Gail P.
dc.date.accessioned2016-10-17T21:17:00Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationRosenthal, Elisabeth A.; Makaryan, Vahagn; Burt, Amber A.; Crosslin, David R.; Kim, Daniel Seung; Smith, Joshua D.; Nickerson, Deborah A.; Reiner, Alex P.; Rich, Stephen S.; Jackson, Rebecca D.; Ganesh, Santhi K.; Polfus, Linda M.; Qi, Lihong; Dale, David C.; Jarvik, Gail P. (2016). "Association Between Absolute Neutrophil Count and Variation at TCIRG1: The NHLBI Exome Sequencing Project." Genetic Epidemiology 40(6): 470-474.
dc.identifier.issn0741-0395
dc.identifier.issn1098-2272
dc.identifier.urihttps://hdl.handle.net/2027.42/134091
dc.description.abstractNeutrophils are a key component of innate immunity. Individuals with low neutrophil count are susceptible to frequent infections. Linkage and association between congenital neutropenia and a single rare missense variant in TCIRG1 have been reported in a single family. Here, we report on nine rare missense variants at evolutionarily conserved sites in TCIRG1 that are associated with lower absolute neutrophil count (ANC; p = 0.005) in 1,058 participants from three cohorts: Atherosclerosis Risk in Communities (ARIC), Coronary Artery Risk Development in Young Adults (CARDIA), and Jackson Heart Study (JHS) of the NHLBI Grand Opportunity Exome Sequencing Project (GO ESP). These results validate the effects of TCIRG1 coding variation on ANC and suggest that this gene may be associated with a spectrum of mild to severe effects on ANC.
dc.publisherThe McGraw‐Hill Companies
dc.publisherWiley Periodicals, Inc.
dc.subject.otherabsolute neutrophil count
dc.subject.otherneutropenia
dc.subject.otherrare variant replication
dc.subject.othernext‐generation sequence data
dc.titleAssociation Between Absolute Neutrophil Count and Variation at TCIRG1: The NHLBI Exome Sequencing Project
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134091/1/gepi21976_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134091/2/gepi21976.pdf
dc.identifier.doi10.1002/gepi.21976
dc.identifier.sourceGenetic Epidemiology
dc.identifier.citedreferencePerson RE, Li FQ, Duan Z, Benson KF, Wechsler J, Papadaki HA, Eliopoulos G, Kaufman C, Bertolone SJ, Nakamoto B and others. 2003. Mutations in proto‐oncogene GFI1 cause human neutropenia and target ELA2. Nat Genet 34 ( 3 ): 308 – 312.
dc.identifier.citedreferenceAncliff PJ, Blundell MP, Cory GO, Calle Y, Worth A, Kempski H, Burns S, Jones GE, Sinclair J, Kinnon C and others. 2006. Two novel activating mutations in the Wiskott‐Aldrich syndrome protein result in congenital neutropenia. Blood 108 ( 7 ): 2182 – 2189.
dc.identifier.citedreferenceCooper GM, Stone EA, Asimenos G, NISC Comparative Sequencing Program, Green ED, Batzoglou S, Sidow A. 2005. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res 15 ( 7 ): 901 – 913.
dc.identifier.citedreferenceCrosslin DR, McDavid A, Weston N, Nelson SC, Zheng X, Hart E, de Andrade M, Kullo IJ, McCarty CA, Doheny KF and others. 2012. Genetic variants associated with the white blood cell count in 13,923 subjects in the eMERGE network. Hum Genet 131 ( 4 ): 639 – 652.
dc.identifier.citedreferenceDale DC. 2010. Chapter 65. Neutropenia and Neutrophilia. In: Lichtman MA, Kipps TJ, Seligsohn U, Kaushansky K, Prchal JT, editors. Williams Hematology, 8e. New York, NY: The McGraw‐Hill Companies.
dc.identifier.citedreferenceDale DC, Cottle TE, Fier CJ, Bolyard AA, Bonilla MA, Boxer LA, Cham B, Freedman MH, Kannourakis G, Kinsey SE and others. 2003. Severe chronic neutropenia: treatment and follow‐up of patients in the severe chronic neutropenia international registry. Am J Hematol 72 ( 2 ): 82 – 93.
dc.identifier.citedreferenceDale DC, Link DC. 2009. The many causes of severe congenital neutropenia. New Engl J Med 360 ( 1 ): 3 – 5.
dc.identifier.citedreferenceDevriendt K, Kim AS, Mathijs G, Frints SG, Schwartz M, Van Den Oord JJ, Verhoef GE, Boogaerts MA, Fryns JP, You D and others. 2001. Constitutively activating mutation in WASP causes X‐linked severe congenital neutropenia. Nat Genet 27 ( 3 ): 313 – 317.
dc.identifier.citedreferenceFaiyaz‐Ul‐Haque M, Al‐Jefri A, Al‐Dayel F, Bhuiyan JA, Abalkhail HA, Al‐Nounou R, Al‐Abdullatif A, Pulicat MS, Gaafar A, Alaiya AA and others. 2010. A novel HAX1 gene mutation in severe congenital neutropenia (SCN) associated with neurological manifestations. Eur J Pediatr 169 ( 6 ): 661 – 666.
dc.identifier.citedreferenceFrattini A, Orchard PJ, Sobacchi C, Giliani S, Abinun M, Mattsson JP, Keeling DJ, Andersson AK, Wallbrandt P, Zecca L and others. 2000. Defects in TCIRG1 subunit of the vacuolar proton pump are responsible for a subset of human autosomal recessive osteopetrosis. Nat Genet 25 ( 3 ): 343 – 346.
dc.identifier.citedreferenceFriedman GD, Cutter GR, Donahue RP, Hughes GH, Hulley SB, Jacobs DR Jr, Liu K, Savage PJ. 1988. CARDIA: study design, recruitment, and some characteristics of the examined subjects. J Clin Epidemiol 41 ( 11 ): 1105 – 1116.
dc.identifier.citedreferenceGermeshausen M, Ballmaier M, Welte K. 2007. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long‐term survey. Blood 109 ( 1 ): 93 – 99.
dc.identifier.citedreferenceGermeshausen M, Grudzien M, Zeidler C, Abdollahpour H, Yetgin S, Rezaei N, Ballmaier M, Grimbacher B, Welte K, Klein C. 2008. Novel HAX1 mutations in patients with severe congenital neutropenia reveal isoform‐dependent genotype‐phenotype associations. Blood 111 ( 10 ): 4954 – 4957.
dc.identifier.citedreferenceGermeshausen M, Deerberg S, Peter Y, Reimer C, Kratz CP, Ballmaier M. 2013. The spectrum of ELANE mutations and their implications in severe congenital and cyclic neutropenia. Hum Mutat 34 ( 6 ): 905 – 914.
dc.identifier.citedreferenceGorlov IP, Gorlova OY, Sunyaev SR, Spitz MR, Amos CI. 2008. Shifting paradigm of association studies: value of rare single‐nucleotide polymorphisms. Am J Hum Genet 82 ( 1 ): 100 – 112.
dc.identifier.citedreferenceHauck F, Klein C. 2013. Pathogenic mechanisms and clinical implications of congenital neutropenia syndromes. Curr Opin Allergy Clin Immunol 13 ( 6 ): 596 – 606.
dc.identifier.citedreferenceJiang H, Chen W, Zhu G, Zhang L, Tucker B, Hao L, Feng S, Ci H, Ma J, Wang L and others. 2013. RNAi‐mediated silencing of Atp6i and Atp6i haploinsufficiency prevents both bone loss and inflammation in a mouse model of periodontal disease. PLoS One 8 ( 4 ): e58599.
dc.identifier.citedreferenceKlein C, Grudzien M, Appaswamy G, Germeshausen M, Sandrock I, Schaffer AA, Rathinam C, Boztug K, Schwinzer B, Rezaei N and others. 2007. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). Nat Genet 39 ( 1 ): 86 – 92.
dc.identifier.citedreferenceMakaryan V, Rosenthal EA, Bolyard AA, Kelley ML, Below JE, Bamshad MJ, Bofferding KM, Smith JD, Buckingham K, Boxer LA and others. 2014. TCIRG1‐associated congenital neutropenia. Hum Mutat 35 ( 7 ): 824 – 827.
dc.identifier.citedreferenceNewburger PE, Dale DC. 2013. Evaluation and management of patients with isolated neutropenia. Semin Hematol 50 ( 3 ): 198 – 206.
dc.identifier.citedreferenceNHLBI GO Exome Sequencing Project (ESP). Exome variant server. Available from http://evs.gs.washington.edu/EVS/.
dc.identifier.citedreferenceR Core Team. 2015. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.
dc.identifier.citedreferenceReiner AP, Lettre G, Nalls MA, Ganesh SK, Mathias R, Austin MA, Dean E, Arepalli S, Britton A, Chen Z and others. 2011. Genome‐wide association study of white blood cell count in 16,388 African Americans: the continental origins and genetic epidemiology network (COGENT). PLoS Genetics 7 ( 6 ): e1002108.
dc.identifier.citedreferenceSempos CT, Bild DE, Manolio TA. 1999. Overview of the Jackson Heart Study: a study of cardiovascular diseases in African American men and women. Am J Med Sci 317 ( 3 ): 142 – 146.
dc.identifier.citedreferenceSmirnova AS, Morgun A, Shulzhenko N, Silva ID, Gerbase‐DeLima M. 2005. Identification of new alternative splice events in the TCIRG1 gene in different human tissues. Biochem Biophys Res Commun 330 ( 3 ): 943 – 949.
dc.identifier.citedreferenceSmith BN, Ancliff PJ, Pizzey A, Khwaja A, Linch DC, Gale RE. 2009. Homozygous HAX1 mutations in severe congenital neutropenia patients with sporadic disease: a novel mutation in two unrelated British kindreds. Br J Haematol 144 ( 5 ): 762 – 770.
dc.identifier.citedreferenceSobacchi C, Schulz A, Coxon FP, Villa A, Helfrich MH. 2013. Osteopetrosis: genetics, treatment and new insights into osteoclast function. Nat Rev Endocrinol 9 ( 9 ): 522 – 536.
dc.identifier.citedreferenceSusani L, Pangrazio A, Sobacchi C, Taranta A, Mortier G, Savarirayan R, Villa A, Orchard P, Vezzoni P, Albertini A and others. 2004. TCIRG1‐dependent recessive osteopetrosis: mutation analysis, functional identification of the splicing defects, and in vitro rescue by U1 snRNA. Hum Mutat 24 ( 3 ): 225 – 235.
dc.identifier.citedreferenceTennessen JA, Bigham AW, O’Connor TD, Fu W, Kenny EE, Gravel S, McGee S, Do R, Liu X, Jun G and others. 2012. Evolution and functional impact of rare coding variation from deep sequencing of human exomes. Science 337 ( 6090 ): 64 – 69.
dc.identifier.citedreferenceThe ARIC investigators. 1989. The atherosclerosis risk in communities (ARIC) study: design and objectives. Am J Epidemiol 129 ( 4 ): 687 – 702.
dc.identifier.citedreferenceXia J, Bolyard AA, Rodger E, Stein S, Aprikyan AA, Dale DC, Link DC. 2009. Prevalence of mutations in ELANE, GFI1, HAX1, SBDS, WAS and G6PC3 in patients with severe congenital neutropenia. Br J Haematol 147 ( 4 ): 535 – 542.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.