Show simple item record

Notch regulation of gastrointestinal stem cells

dc.contributor.authorDemitrack, Elise S.
dc.contributor.authorSamuelson, Linda C.
dc.date.accessioned2016-10-17T21:17:22Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09-01
dc.identifier.citationDemitrack, Elise S.; Samuelson, Linda C. (2016). "Notch regulation of gastrointestinal stem cells." The Journal of Physiology 594(17): 4791-4803.
dc.identifier.issn0022-3751
dc.identifier.issn1469-7793
dc.identifier.urihttps://hdl.handle.net/2027.42/134111
dc.description.abstractThe gastrointestinal (GI) tract epithelium is continuously replenished by actively cycling stem and progenitor cells. These cell compartments are regulated to balance proliferation and stem cell renewal with differentiation into the various mature cell types to maintain tissue homeostasis. In this topical review we focus on the role of the Notch signalling pathway to regulate GI stem cell function in adult small intestine and stomach. We first present the current view of stem and progenitor cell populations in these tissues and then summarize the studies that have established the Notch pathway as a key regulator of gastric and intestinal stem cell function. Notch signalling has been shown to be a niche factor required for maintenance of GI stem cells in both tissues. In addition, Notch has been described to regulate epithelial cell differentiation. Recent studies have revealed key similarities and differences in how Notch regulates stem cell function in the stomach compared to intestine. We summarize the literature regarding Notch regulation of GI stem cell proliferation and differentiation, highlighting tissue‐specific functions to compare and contrast Notch in the stomach and intestine.Notch regulation of intestinal epithelial cell homeostasis. A, during homeostatic conditions, Notch maintains the intestinal stem cell (SC) pool and promotes proliferation of a multi‐potential (MP) progenitor cell that will further differentiate into an absorptive progenitor (AP) or secretory progenitor (SP) cell in the intestine. Therefore, Notch is required to maintain the balance of stem cell proliferation and differentiation. B, during Notch inhibition, stem cell proliferation is reduced and progenitor cells are fated towards the secretory lineage. This results in a net reduction in proliferation and increased secretory cell differentiation. C, in contrast, Notch activation leads to expansion of the stem cell compartment, resulting in increased stem cell proliferation and an overall reduction in epithelial cell differentiation.
dc.publisherWiley Periodicals, Inc.
dc.titleNotch regulation of gastrointestinal stem cells
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134111/1/tjp7117.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134111/2/tjp7117_am.pdf
dc.identifier.doi10.1113/JP271667
dc.identifier.sourceThe Journal of Physiology
dc.identifier.citedreferenceStanger BZ, Datar R, Murtaugh LC & Melton DA ( 2005 ). Direct regulation of intestinal fate by Notch. Proc Natl Acad Sci USA 102, 12443 – 12448.
dc.identifier.citedreferenceUeo T, Imayoshi I, Kobayashi T, Ohtsuka T, Seno H, Nakase H, Chiba T & Kageyama R ( 2012 ). The role of Hes genes in intestinal development, homeostasis and tumor formation. Development 139, 1071 – 1082.
dc.identifier.citedreferencevan der Flier LG, Haegebarth A, Stange DE, van de Wetering M & Clevers H ( 2009 ). OLFM4 is a robust marker for stem cells in human intestine and marks a subset of colorectal cancer cells. Gastroenterology 137, 15 – 17.
dc.identifier.citedreferenceVanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ, Magness ST, Tran IT, Maillard I, Siebel C, Kolterud A, Grosse AS, Gumucio DL, Ernst SA, Tsai YH, Dempsey PJ & Samuelson LC ( 2012 ). Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139, 488 – 497.
dc.identifier.citedreferenceVanDussen KL & Samuelson LC ( 2010 ). Mouse atonal homolog 1 directs intestinal progenitors to secretory cell rather than absorptive cell fate. Dev Biol 346, 215 – 223.
dc.identifier.citedreferencevan Es JH, Jay P, Gregorieff A, van Gijn ME, Jonkheer S, Hatzis P, Thiele A, van den Born M, Begthel H, Brabletz T, Taketo MM & Clevers H ( 2005 a ). Wnt signalling induces maturation of Paneth cells in intestinal crypts. Nat Cell Biol 7, 381 – 386.
dc.identifier.citedreferencevan Es JH, Sato T, van de Wetering M, Lyubimova A, Nee AN, Gregorieff A, Sasaki N, Zeinstra L, van den Born M, Korving J, Martens AC, Barker N, van Oudenaarden A & Clevers H ( 2012 ). Dll1 + secretory progenitor cells revert to stem cells upon crypt damage. Nat Cell Biol 14, 1099 – 1104.
dc.identifier.citedreferencevan Es JH, van Gijn ME, Riccio O, van den Born M, Vooijs M, Begthel H, Cozijnsen M, Robine S, Winton DJ, Radtke F & Clevers H ( 2005 b ). Notch/γ‐secretase inhibition turns proliferative cells in intestinal crypts and adenomas into goblet cells. Nature 435, 959 – 963.
dc.identifier.citedreferenceVan Landeghem L, Santoro MA, Krebs AE, Mah AT, Dehmer JJ, Gracz AD, Scull BP, McNaughton K, Magness ST & Lund PK ( 2012 ). Activation of two distinct Sox9‐EGFP‐expressing intestinal stem cell populations during crypt regeneration after irradiation. Am J Physiol Gastrointest Liver Physiol 302, G1111 – G1132.
dc.identifier.citedreferenceWu Y, Cain‐Hom C, Choy L, Hagenbeek TJ, de Leon GP, Chen Y, Finkle D, Venook R, Wu X, Ridgway J, Schahin‐Reed D, Dow GJ, Shelton A, Stawicki S, Watts RJ, Zhang J, Choy R, Howard P, Kadyk L, Yan M, Zha J, Callahan CA, Hymowitz SG & Siebel CW ( 2010 ). Therapeutic antibody targeting of individual Notch receptors. Nature 464, 1052 – 1057.
dc.identifier.citedreferenceYan KS, Chia LA, Li X, Ootani A, Su J, Lee JY, Su N, Luo Y, Heilshorn SC, Amieva MR, Sangiorgi E, Capecchi MR & Kuo CJ ( 2012 ). The intestinal stem cell markers Bmi1 and Lgr5 identify two functionally distinct populations. Proc Natl Acad Sci USA 109, 466 – 471.
dc.identifier.citedreferenceYang J, Chan CY, Jiang B, Yu X, Zhu GZ, Chen Y, Barnard J & Mei W ( 2009 ). hnRNP I inhibits Notch signaling and regulates intestinal epithelial homeostasis in the zebrafish. PLoS Genet 5, e1000363.
dc.identifier.citedreferenceYang Q, Bermingham NA, Finegold MJ & Zoghbi HY ( 2001 ). Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294, 2155 – 2158.
dc.identifier.citedreferenceYeh TS, Wu CW, Hsu KW, Liao WJ, Yang MC, Li AF, Wang AM, Kuo ML & Chi CW ( 2009 ). The activated Notch1 signal pathway is associated with gastric cancer progression through cyclooxygenase‐2. Cancer Res 69, 5039 – 5048.
dc.identifier.citedreferenceZheng H, Pritchard DM, Yang X, Bennett E, Liu G, Liu C & Ai W ( 2009 ). KLF4 gene expression is inhibited by the Notch signaling pathway that controls goblet cell differentiation in mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 296, G490 – G498.
dc.identifier.citedreferenceZheng X, Tsuchiya K, Okamoto R, Iwasaki M, Kano Y, Sakamoto N, Nakamura T & Watanabe M ( 2011 ). Suppression of hath1 gene expression directly regulated by hes1 via Notch signaling is associated with goblet cell depletion in ulcerative colitis. Inflamm Bowel Dis 17, 2251 – 2260.
dc.identifier.citedreferenceAl Alam D, Danopoulos S, Schall K, Sala FG, Almohazey D, Fernandez GE, Georgia S, Frey MR, Ford HR, Grikscheit T & Bellusci S ( 2015 ). Fibroblast growth factor 10 alters the balance between goblet and Paneth cells in the adult mouse small intestine. Am J Physiol Gastrointest Liver Physiol 308, G678 – G690.
dc.identifier.citedreferenceArnold K, Sarkar A, Yram MA, Polo JM, Bronson R, Sengupta S, Seandel M, Geijsen N & Hochedlinger K ( 2011 ). Sox2 + adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell 9, 317 – 329.
dc.identifier.citedreferenceBarker N, Huch M, Kujala P, van de Wetering M, Snippert HJ, van Es JH, Sato T, Stange DE, Begthel H, van den Born M, Danenberg E, van den Brink S, Korving J, Abo A, Peters PJ, Wright N, Poulsom R & Clevers H ( 2010 ). Lgr5 +ve stem cells drive self‐renewal in the stomach and build long‐lived gastric units in vitro. Cell Stem Cell 6, 25 – 36.
dc.identifier.citedreferenceBarker N, van Es JH, Kuipers J, Kujala P, van den Born M, Cozijnsen M, Haegebarth A, Korving J, Begthel H, Peters PJ & Clevers H ( 2007 ). Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449, 1003 – 1007.
dc.identifier.citedreferenceBastide P, Darido C, Pannequin J, Kist R, Robine S, Marty‐Double C, Bibeau F, Scherer G, Joubert D, Hollande F, Blache P & Jay P ( 2007 ). Sox9 regulates cell proliferation and is required for Paneth cell differentiation in the intestinal epithelium. J Cell Biol 178, 635 – 648.
dc.identifier.citedreferenceBauer L, Takacs A, Slotta‐Huspenina J, Langer R, Becker K, Novotny A, Ott K, Walch A, Hapfelmeier A & Keller G ( 2015 ). Clinical significance of NOTCH1 and NOTCH2 expression in gastric carcinomas: an immunohistochemical study. Front Oncol 5, 94.
dc.identifier.citedreferenceBuczacki SJ, Zecchini HI, Nicholson AM, Russell R, Vermeulen L, Kemp R & Winton DJ ( 2013 ). Intestinal label‐retaining cells are secretory precursors expressing Lgr5. Nature 495, 65 – 69.
dc.identifier.citedreferenceCarulli AJ, Keeley TM, Demitrack ES, Chung J, Maillard I & Samuelson LC ( 2015 ). Notch receptor regulation of intestinal stem cell homeostasis and crypt regeneration. Dev Biol 402, 98 – 108.
dc.identifier.citedreferenceChu D, Li Y, Wang W, Zhao Q, Li J, Lu Y, Li M, Dong G, Zhang H, Xie H & Ji G ( 2010 ). High level of Notch1 protein is associated with poor overall survival in colorectal cancer. Ann Surg Oncol 17, 1337 – 1342.
dc.identifier.citedreferenceDemarest RM, Ratti F & Capobianco AJ ( 2008 ). It’s T‐ALL about Notch. Oncogene 27, 5082 – 5091.
dc.identifier.citedreferenceDemitrack ES, Gifford GB, Keeley TM, Carulli AJ, VanDussen KL, Thomas D, Giordano TJ, Liu Z, Kopan R & Samuelson LC ( 2015 ). Notch signaling regulates gastric antral LGR5 stem cell function. EMBO J 34, 2522 – 2536.
dc.identifier.citedreferenceDurand A, Donahue B, Peignon G, Letourneur F, Cagnard N, Slomianny C, Perret C, Shroyer NF & Romagnolo B ( 2012 ). Functional intestinal stem cells after Paneth cell ablation induced by the loss of transcription factor Math1 (Atoh1). Proc Natl Acad Sci USA 109, 8965 – 8970.
dc.identifier.citedreferenceFormeister EJ, Sionas AL, Lorance DK, Barkley CL, Lee GH & Magness ST ( 2009 ). Distinct SOX9 levels differentially mark stem/progenitor populations and enteroendocrine cells of the small intestine epithelium. Am J Physiol Gastrointest Liver Physiol 296, G1108 – G1118.
dc.identifier.citedreferenceFre S, Hannezo E, Sale S, Huyghe M, Lafkas D, Kissel H, Louvi A, Greve J, Louvard D & Artavanis‐Tsakonas S ( 2011 ). Notch lineages and activity in intestinal stem cells determined by a new set of knock‐in mice. PLoS One 6, e25785.
dc.identifier.citedreferenceFre S, Huyghe M, Mourikis P, Robine S, Louvard D & Artavanis‐Tsakonas S ( 2005 ). Notch signals control the fate of immature progenitor cells in the intestine. Nature 435, 964 – 968.
dc.identifier.citedreferenceFre S, Pallavi SK, Huyghe M, Lae M, Janssen KP, Robine S, Artavanis‐Tsakonas S & Louvard D ( 2009 ). Notch and Wnt signals cooperatively control cell proliferation and tumorigenesis in the intestine. Proc Natl Acad Sci USA 106, 6309 – 6314.
dc.identifier.citedreferenceFuruyama K, Kawaguchi Y, Akiyama H, Horiguchi M, Kodama S, Kuhara T, Hosokawa S, Elbahrawy A, Soeda T, Koizumi M, Masui T, Kawaguchi M, Takaori K, Doi R, Nishi E, Kakinoki R, Deng JM, Behringer RR, Nakamura T & Uemoto S ( 2011 ). Continuous cell supply from a Sox9‐expressing progenitor zone in adult liver, exocrine pancreas and intestine. Nat Genet 43, 34 – 41.
dc.identifier.citedreferenceGarabedian EM, Roberts LJ, McNevin MS & Gordon JI ( 1997 ). Examining the role of Paneth cells in the small intestine by lineage ablation in transgenic mice. J Biol Chem 272, 23729 – 23740.
dc.identifier.citedreferenceGifford GB, Demitrack ES, Keeley TM, Tam A, La Cunza N, Dedhia PH, Spence JR, Simeone DM, Louvi A, Siebel CW & Samuelson LC ( 2016 ). Notch1 and Notch2 receptors regulate mouse and human gastric antral epithelial cell homeostasis. Gut (in press), doi: 10.1136/gutjnl-2015-310811.
dc.identifier.citedreferenceGuilmeau S ( 2012 ). Notch signaling and intestinal cancer. Adv Exp Med Biol 727, 272 – 288.
dc.identifier.citedreferenceHsu KW, Hsieh RH, Huang KH, Fen‐Yau Li A, Chi CW, Wang TY, Tseng MJ, Wu KJ & Yeh TS ( 2012 ). Activation of the Notch1/STAT3/Twist signaling axis promotes gastric cancer progression. Carcinogenesis 33, 1459 – 1467.
dc.identifier.citedreferenceJenny M, Uhl C, Roche C, Duluc I, Guillermin V, Guillemot F, Jensen J, Kedinger M & Gradwohl G ( 2002 ). Neurogenin3 is differentially required for endocrine cell fate specification in the intestinal and gastric epithelium. EMBO J 21, 6338 – 6347.
dc.identifier.citedreferenceJensen J, Pedersen EE, Galante P, Hald J, Heller RS, Ishibashi M, Kageyama R, Guillemot F, Serup P & Madsen OD ( 2000 ). Control of endodermal endocrine development by Hes‐1. Nat Genet 24, 36 – 44.
dc.identifier.citedreferenceKazanjian A, Noah T, Brown D, Burkart J & Shroyer NF ( 2010 ). Atonal homolog 1 is required for growth and differentiation effects of notch/gamma‐secretase inhibitors on normal and cancerous intestinal epithelial cells. Gastroenterology 139, 918 – 928.
dc.identifier.citedreferenceKazanjian A & Shroyer NF ( 2011 ). NOTCH signaling and ATOH1 in colorectal cancers. Curr Colorectal Cancer Rep 7, 121 – 127.
dc.identifier.citedreferenceKeeley TM & Samuelson LC ( 2010 ). Cytodifferentiation of the postnatal mouse stomach in normal and Huntingtin‐interacting protein 1‐related‐deficient mice. Am J Physiol Gastrointest Liver Physiol 299, G1241 – G1251.
dc.identifier.citedreferenceKim TH, Escudero S & Shivdasani RA ( 2012 ). Intact function of Lgr5 receptor‐expressing intestinal stem cells in the absence of Paneth cells. Proc Natl Acad Sci USA 109, 3932 – 3937.
dc.identifier.citedreferenceKim TH & Shivdasani RA ( 2011 a ). Genetic evidence that intestinal Notch functions vary regionally and operate through a common mechanism of Math1 repression. J Biol Chem 286, 11427 – 11433.
dc.identifier.citedreferenceKim TH & Shivdasani RA ( 2011 b ). Notch signaling in stomach epithelial stem cell homeostasis. J Exp Med 208, 677 – 688.
dc.identifier.citedreferenceKoch U, Lehal R & Radtke F ( 2013 ). Stem cells living with a Notch. Development 140, 689 – 704.
dc.identifier.citedreferenceKopan R & Ilagan MX ( 2009 ). The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216 – 233.
dc.identifier.citedreferenceKozar S, Morrissey E, Nicholson AM, van der Heijden M, Zecchini HI, Kemp R, Tavare S, Vermeulen L & Winton DJ ( 2013 ). Continuous clonal labeling reveals small numbers of functional stem cells in intestinal crypts and adenomas. Cell Stem Cell 13, 626 – 633.
dc.identifier.citedreferenceLee CS, Perreault N, Brestelli JE & Kaestner KH ( 2002 ). Neurogenin 3 is essential for the proper specification of gastric enteroendocrine cells and the maintenance of gastric epithelial cell identity. Genes Dev 16, 1488 – 1497.
dc.identifier.citedreferenceLeushacke M, Ng A, Galle J, Loeffler M & Barker N ( 2013 ). Lgr5 + gastric stem cells divide symmetrically to effect epithelial homeostasis in the pylorus. Cell Rep 5, 349 – 356.
dc.identifier.citedreferenceLopez‐Arribillaga E, Rodilla V, Pellegrinet L, Guiu J, Iglesias M, Roman AC, Gutarra S, Gonzalez S, Munoz‐Canoves P, Fernandez‐Salguero P, Radtke F, Bigas A & Espinosa L ( 2015 ). Bmi1 regulates murine intestinal stem cell proliferation and self‐renewal downstream of Notch. Development 142, 41 – 50.
dc.identifier.citedreferenceLopez‐Diaz L, Jain RN, Keeley TM, VanDussen KL, Brunkan CS, Gumucio DL & Samuelson LC ( 2007 ). Intestinal Neurogenin 3 directs differentiation of a bipotential secretory progenitor to endocrine cell rather than goblet cell fate. Dev Biol 309, 298 – 305.
dc.identifier.citedreferenceMcDonald SA, Greaves LC, Gutierrez‐Gonzalez L, Rodriguez‐Justo M, Deheragoda M, Leedham SJ, Taylor RW, Lee CY, Preston SL, Lovell M, Hunt T, Elia G, Oukrif D, Harrison R, Novelli MR, Mitchell I, Stoker DL, Turnbull DM, Jankowski JA & Wright NA ( 2008 ). Mechanisms of field cancerization in the human stomach: the expansion and spread of mutated gastric stem cells. Gastroenterology 134, 500 – 510.
dc.identifier.citedreferenceMicchelli CA & Perrimon N ( 2006 ). Evidence that stem cells reside in the adult Drosophila midgut epithelium. Nature 439, 475 – 479.
dc.identifier.citedreferenceMills JC & Sansom OJ ( 2015 ). Reserve stem cells: Differentiated cells reprogram to fuel repair, metaplasia, and neoplasia in the adult gastrointestinal tract. Sci Signal 8, re8.
dc.identifier.citedreferenceMontgomery RK, Carlone DL, Richmond CA, Farilla L, Kranendonk ME, Henderson DE, Baffour‐Awuah NY, Ambruzs DM, Fogli LK, Algra S & Breault DT ( 2011 ). Mouse telomerase reverse transcriptase (mTert) expression marks slowly cycling intestinal stem cells. Proc Natl Acad Sci USA 108, 179 – 184.
dc.identifier.citedreferenceMori‐Akiyama Y, van den Born M, van Es JH, Hamilton SR, Adams HP, Zhang J, Clevers H & de Crombrugghe B ( 2007 ). SOX9 is required for the differentiation of Paneth cells in the intestinal epithelium. Gastroenterology 133, 539 – 546.
dc.identifier.citedreferenceMunoz J, Stange DE, Schepers AG, van de Wetering M, Koo BK, Itzkovitz S, Volckmann R, Kung KS, Koster J, Radulescu S, Myant K, Versteeg R, Sansom OJ, van Es JH, Barker N, van Oudenaarden A, Mohammed S, Heck AJ & Clevers H ( 2012 ). The Lgr5 intestinal stem cell signature: robust expression of proposed quiescent ‘+4’ cell markers. EMBO J 31, 3079 – 3091.
dc.identifier.citedreferenceMutoh H, Sakamoto H, Hayakawa H, Arao Y, Satoh K, Nokubi M & Sugano K ( 2006 ). The intestine‐specific homeobox gene Cdx2 induces expression of the basic helix–loop–helix transcription factor Math1. Differentiation 74, 313 – 321.
dc.identifier.citedreferenceNoah TK, Kazanjian A, Whitsett J & Shroyer NF ( 2010 ). SAM pointed domain ETS factor (SPDEF) regulates terminal differentiation and maturation of intestinal goblet cells. Exp Cell Res 316, 452 – 465.
dc.identifier.citedreferenceNoah TK & Shroyer NF ( 2013 ). Notch in the intestine: regulation of homeostasis and pathogenesis. Annu Rev Physiol 75, 263 – 288.
dc.identifier.citedreferenceNomura S, Esumi H, Job C & Tan SS ( 1998 ). Lineage and clonal development of gastric glands. Dev Biol 204, 124 – 135.
dc.identifier.citedreferencePellegrinet L, Rodilla V, Liu Z, Chen S, Koch U, Espinosa L, Kaestner KH, Kopan R, Lewis J & Radtke F ( 2011 ). Dll1‐ and Dll4‐mediated notch signaling are required for homeostasis of intestinal stem cells. Gastroenterology 140, 1230 – 1240.
dc.identifier.citedreferencePiazzi G, Fini L, Selgrad M, Garcia M, Daoud Y, Wex T, Malfertheiner P, Gasbarrini A, Romano M, Meyer RL, Genta RM, Fox JG, Boland CR, Bazzoli F & Ricciardiello L ( 2011 ). Epigenetic regulation of Delta‐Like1 controls Notch1 activation in gastric cancer. Oncotarget 2, 1291 – 1301.
dc.identifier.citedreferencePowell AE, Wang Y, Li Y, Poulin EJ, Means AL, Washington MK, Higginbotham JN, Juchheim A, Prasad N, Levy SE, Guo Y, Shyr Y, Aronow BJ, Haigis KM, Franklin JL & Coffey RJ ( 2012 ). The pan‐ErbB negative regulator Lrig1 is an intestinal stem cell marker that functions as a tumor suppressor. Cell 149, 146 – 158.
dc.identifier.citedreferenceQiao XT, Ziel JW, McKimpson W, Madison BB, Todisco A, Merchant JL, Samuelson LC & Gumucio DL ( 2007 ). Prospective identification of a multilineage progenitor in murine stomach epithelium. Gastroenterology 133, 1989 – 1998.
dc.identifier.citedreferenceReedijk M, Odorcic S, Zhang H, Chetty R, Tennert C, Dickson BC, Lockwood G, Gallinger S & Egan SE ( 2008 ). Activation of Notch signaling in human colon adenocarcinoma. Int J Oncol 33, 1223 – 1229.
dc.identifier.citedreferenceRiccio O, van Gijn ME, Bezdek AC, Pellegrinet L, van Es JH, Zimber‐Strobl U, Strobl LJ, Honjo T, Clevers H & Radtke F ( 2008 ). Loss of intestinal crypt progenitor cells owing to inactivation of both Notch1 and Notch2 is accompanied by derepression of CDK inhibitors p27Kip1 and p57Kip2. EMBO Rep 9, 377 – 383.
dc.identifier.citedreferenceRothenberg ME, Nusse Y, Kalisky T, Lee JJ, Dalerba P, Scheeren F, Lobo N, Kulkarni S, Sim S, Qian D, Beachy PA, Pasricha PJ, Quake SR & Clarke MF ( 2012 ). Identification of a cKit + colonic crypt base secretory cell that supports Lgr5 + stem cells in mice. Gastroenterology 142, 1195 – 1205 e1196.
dc.identifier.citedreferenceSancho R, Cremona CA & Behrens A ( 2015 ). Stem cell and progenitor fate in the mammalian intestine: Notch and lateral inhibition in homeostasis and disease. EMBO Rep 16, 571 – 581.
dc.identifier.citedreferenceSander GR & Powell BC ( 2004 ). Expression of notch receptors and ligands in the adult gut. J Histochem Cytochem 52, 509 – 516.
dc.identifier.citedreferenceSangiorgi E & Capecchi MR ( 2008 ). Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 40, 915 – 920.
dc.identifier.citedreferenceSato T, van Es JH, Snippert HJ, Stange DE, Vries RG, van den Born M, Barker N, Shroyer NF, van de Wetering M & Clevers H ( 2011 ). Paneth cells constitute the niche for Lgr5 stem cells in intestinal crypts. Nature 469, 415 – 418.
dc.identifier.citedreferenceSchonhoff SE, Giel‐Moloney M & Leiter AB ( 2004 ). Neurogenin 3‐expressing progenitor cells in the gastrointestinal tract differentiate into both endocrine and non‐endocrine cell types. Dev Biol 270, 443 – 454.
dc.identifier.citedreferenceSchröder N & Gossler A ( 2002 ). Expression of Notch pathway components in fetal and adult mouse small intestine. Gene Expr Patterns 2, 247 – 250.
dc.identifier.citedreferenceSei Y, Lu X, Liou A, Zhao X & Wank SA ( 2011 ). A stem cell marker‐expressing subset of enteroendocrine cells resides at the crypt base in the small intestine. Am J Physiol Gastrointest Liver Physiol 300, G345 – G356.
dc.identifier.citedreferenceShimizu H, Okamoto R, Ito G, Fujii S, Nakata T, Suzuki K, Murano T, Mizutani T, Tsuchiya K, Nakamura T, Hozumi K & Watanabe M ( 2014 ). Distinct expression patterns of Notch ligands, Dll1 and Dll4, in normal and inflamed mice intestine. PeerJ 2, e370.
dc.identifier.citedreferenceShroyer NF, Helmrath MA, Wang VY, Antalffy B, Henning SJ & Zoghbi HY ( 2007 ). Intestine‐specific ablation of mouse atonal homolog 1 (Math1) reveals a role in cellular homeostasis. Gastroenterology 132, 2478 – 2488.
dc.identifier.citedreferenceShroyer NF, Wallis D, Venken KJ, Bellen HJ & Zoghbi HY ( 2005 ). Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev 19, 2412 – 2417.
dc.identifier.citedreferenceSnippert HJ, van der Flier LG, Sato T, van Es JH, van den Born M, Kroon‐Veenboer C, Barker N, Klein AM, van Rheenen J, Simons BD & Clevers H ( 2010 ). Intestinal crypt homeostasis results from neutral competition between symmetrically dividing Lgr5 stem cells. Cell 143, 134 – 144.
dc.identifier.citedreferenceStange DE, Koo BK, Huch M, Sibbel G, Basak O, Lyubimova A, Kujala P, Bartfeld S, Koster J, Geahlen JH, Peters PJ, van Es JH, van de Wetering M, Mills JC & Clevers H ( 2013 ). Differentiated Troy + chief cells act as reserve stem cells to generate all lineages of the stomach epithelium. Cell 155, 357 – 368.
dc.identifier.citedreferenceLee ER ( 1985 ). Dynamic histology of the antral epithelium in the mouse stomach: I. Architecture of antral units. Am J Anat 172, 187 – 204.
dc.identifier.citedreferenceTakebe N, Miele L, Harris PJ, Jeong W, Bando H, Kahn M, Yang SX & Ivy SP ( 2015 ). Targeting Notch, Hedgehog, and Wnt pathways in cancer stem cells: clinical update. Nat Rev Clin Oncol 12, 445 – 464.
dc.identifier.citedreferenceTakeda N, Jain R, LeBoeuf MR, Wang Q, Lu MM & Epstein JA ( 2011 ). Interconversion between intestinal stem cell populations in distinct niches. Science 334, 1420 – 1424.
dc.identifier.citedreferenceTian H, Biehs B, Warming S, Leong KG, Rangell L, Klein OD & de Sauvage FJ ( 2011 ). A reserve stem cell population in small intestine renders Lgr5‐positive cells dispensable. Nature 478, 255 – 259.
dc.identifier.citedreferenceTran IT, Sandy AR, Carulli AJ, Ebens C, Chung J, Shan GT, Radojcic V, Friedman A, Gridley T, Shelton A, Reddy P, Samuelson LC, Yan M, Siebel CW & Maillard I ( 2013 ). Blockade of individual Notch ligands and receptors controls graft‐versus‐host disease. J Clin Invest 123, 1590 – 1604.
dc.identifier.citedreferenceTsai YH, VanDussen KL, Sawey ET, Wade AW, Kasper C, Rakshit S, Bhatt RG, Stoeck A, Maillard I, Crawford HC, Samuelson LC & Dempsey PJ ( 2014 ). ADAM10 regulates Notch function in intestinal stem cells of mice. Gastroenterology 147, 822 – 834.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.