Show simple item record

Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data

dc.contributor.authorBreuillard, H.
dc.contributor.authorLe Contel, O.
dc.contributor.authorRetino, A.
dc.contributor.authorChasapis, A.
dc.contributor.authorChust, T.
dc.contributor.authorMirioni, L.
dc.contributor.authorGraham, D. B.
dc.contributor.authorWilder, F. D.
dc.contributor.authorCohen, I.
dc.contributor.authorVaivads, A.
dc.contributor.authorKhotyaintsev, Yu. V.
dc.contributor.authorLindqvist, P.‐a.
dc.contributor.authorMarklund, G. T.
dc.contributor.authorBurch, J. L.
dc.contributor.authorTorbert, R. B.
dc.contributor.authorErgun, R. E.
dc.contributor.authorGoodrich, K. A.
dc.contributor.authorMacri, J.
dc.contributor.authorNeedell, J.
dc.contributor.authorChutter, M.
dc.contributor.authorRau, D.
dc.contributor.authorDors, I.
dc.contributor.authorRussell, C. T.
dc.contributor.authorMagnes, W.
dc.contributor.authorStrangeway, R. J.
dc.contributor.authorBromund, K. R.
dc.contributor.authorPlaschke, F.
dc.contributor.authorFischer, D.
dc.contributor.authorLeinweber, H. K.
dc.contributor.authorAnderson, B. J.
dc.contributor.authorLe, G.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorKepko, E. L.
dc.contributor.authorBaumjohann, W.
dc.contributor.authorMauk, B.
dc.contributor.authorFuselier, S. A.
dc.contributor.authorNakamura, R.
dc.date.accessioned2016-10-17T21:17:34Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07-28
dc.identifier.citationBreuillard, H.; Le Contel, O.; Retino, A.; Chasapis, A.; Chust, T.; Mirioni, L.; Graham, D. B.; Wilder, F. D.; Cohen, I.; Vaivads, A.; Khotyaintsev, Yu. V.; Lindqvist, P.‐a. ; Marklund, G. T.; Burch, J. L.; Torbert, R. B.; Ergun, R. E.; Goodrich, K. A.; Macri, J.; Needell, J.; Chutter, M.; Rau, D.; Dors, I.; Russell, C. T.; Magnes, W.; Strangeway, R. J.; Bromund, K. R.; Plaschke, F.; Fischer, D.; Leinweber, H. K.; Anderson, B. J.; Le, G.; Slavin, J. A.; Kepko, E. L.; Baumjohann, W.; Mauk, B.; Fuselier, S. A.; Nakamura, R. (2016). "Multispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data." Geophysical Research Letters 43(14): 7279-7286.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/134119
dc.description.abstractDipolarization fronts (DFs), embedded in bursty bulk flows, play a crucial role in Earth’s plasma sheet dynamics because the energy input from the solar wind is partly dissipated in their vicinity. This dissipation is in the form of strong lowâ frequency waves that can heat and accelerate energetic electrons up to the highâ latitude plasma sheet. However, the dynamics of DF propagation and associated lowâ frequency waves in the magnetotail are still under debate due to instrumental limitations and spacecraft separation distances. In May 2015 the Magnetospheric Multiscale (MMS) mission was in a stringâ ofâ pearls configuration with an average intersatellite distance of 160â km, which allows us to study in detail the microphysics of DFs. Thus, in this letter we employ MMS data to investigate the properties of dipolarization fronts propagating earthward and associated whistler mode wave emissions. We show that the spatial dynamics of DFs are below the ion gyroradius scale in this region (â ¼500â km), which can modify the dynamics of ions in the vicinity of the DF (e.g., making their motion nonadiabatic). We also show that whistler wave dynamics have a temporal scale of the order of the ion gyroperiod (a few seconds), indicating that the perpendicular temperature anisotropy can vary on such time scales.Key PointsSpatial dynamics of dipolarization fronts are below the ion gyroradiusAssociated whistler wave dynamics have a temporal scale of the order of the ion gyroperiodThe nature of DFs and its implication on associated lowâ frequency waves is discussed
dc.publisherWiley Periodicals, Inc.
dc.publisherAGU
dc.subject.otherdipolarization fronts
dc.subject.otherEarth magnetotail
dc.titleMultispacecraft analysis of dipolarization fronts and associated whistler wave emissions using MMS data
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134119/1/grl54527_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134119/2/grl54527.pdf
dc.identifier.doi10.1002/2016GL069188
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferencePaschmann, G., and P. W. Daly ( 1998 ), Analysis methods for multiâ spacecraft data, 1.
dc.identifier.citedreferencePollock, C., et al. ( 2016 ), Fast plasma investigation for magnetospheric multiscale, Space Sci. Rev., 199, 331 â 406, doi: 10.1007/s11214-016-0245-4.
dc.identifier.citedreferencePritchett, P. L., and F. V. Coroniti ( 2010 ), A kinetic ballooning/interchange instability in the magnetotail, J. Geophys. Res., 115, A06301, doi: 10.1029/2009JA014752.
dc.identifier.citedreferencePritchett, P. L., and F. V. Coroniti ( 2011 ), Plasma sheet disruption by interchangeâ generated flow intrusions, Geophys. Res. Lett., 38, L10102, doi: 10.1029/2011GL047527.
dc.identifier.citedreferencePritchett, P. L., and F. V. Coroniti ( 2013 ), Structure and consequences of the kinetic ballooning/interchange instability in the magnetotail, J. Geophys. Res. Space Physics, 118, 146 â 159, doi: 10.1029/2012JA018143.
dc.identifier.citedreferencePritchett, P. L., F. V. Coroniti, and Y. Nishimura ( 2014 ), The kinetic ballooning/interchange instability as a source of dipolarization fronts and auroral streamers, J. Geophys. Res. Space Physics, 119, 4723 â 4739, doi: 10.1002/2014JA019890.
dc.identifier.citedreferenceRunov, A., V. Angelopoulos, M. I. Sitnov, V. A. Sergeev, J. Bonnell, J. P. McFadden, D. Larson, K.â H. Glassmeier, and U. Auster ( 2009 ), THEMIS observations of an earthwardâ propagating dipolarization front, Geophys. Res. Lett., 36, L14106, doi: 10.1029/2009GL038980.
dc.identifier.citedreferenceRunov, A., et al. ( 2011 ), Dipolarization fronts in the magnetotail plasma sheet, Planet. Space Sci., 59, 517 â 525, doi: 10.1016/j.pss.2010.06.006.
dc.identifier.citedreferenceRunov, A., V. Angelopoulos, and X.â Z. Zhou ( 2012 ), Multipoint observations of dipolarization front formation by magnetotail reconnection, J. Geophys. Res., 117, A05230, doi: 10.1029/2011JA017361.
dc.identifier.citedreferenceRussell, C. T., et al. ( 2016 ), The magnetospheric multiscale magnetometers, Space Sci. Rev., 199 ( 1 ), 189 â 256, doi: 10.1007/s11214-014-0057-3.
dc.identifier.citedreferenceSchmid, D., M. Volwerk, R. Nakamura, W. Baumjohann, and M. Heyn ( 2011 ), A statistical and event study of magnetotail dipolarization fronts, Ann. Geophys., 29 ( 9 ), 1537 â 1547, doi: 10.5194/angeo-29-1537-2011.
dc.identifier.citedreferenceSchmid, D., R. Nakamura, F. Plaschke, M. Volwerk, and W. Baumjohann ( 2015 ), Two states of magnetotail dipolarization fronts: A statistical study, J. Geophys. Res. Space Physics, 120, 1096 â 1108, doi: 10.1002/2014JA020380.
dc.identifier.citedreferenceSergeev, V., V. Angelopoulos, S. Apatenkov, J. Bonnell, R. Ergun, R. Nakamura, J. McFadden, D. Larson, and A. Runov ( 2009 ), Kinetic structure of the sharp injection/dipolarization front in the flowâ braking region, Geophys. Res. Lett., 36, L21105, doi: 10.1029/2009GL040658.
dc.identifier.citedreferenceSitnov, M. I., M. Swisdak, and A. V. Divin ( 2009 ), Dipolarization fronts as a signature of transient reconnection in the magnetotail, J. Geophys. Res., 114, A04202, doi: 10.1029/2008JA013980.
dc.identifier.citedreferenceSitnov, M. I., N. Buzulukova, M. Swisdak, V. G. Merkin, and T. E. Moore ( 2013 ), Spontaneous formation of dipolarization fronts and reconnection onset in the magnetotail, Geophys. Res. Lett., 40, 22 â 27, doi: 10.1029/2012GL054701.
dc.identifier.citedreferenceSlavin, J. A., R. P. Lepping, J. Gjerloev, D. H. Fairfield, M. Hesse, C. J. Owen, M. B. Moldwin, T. Nagai, A. Ieda, and T. Mukai ( 2003 ), Geotail observations of magnetic flux ropes in the plasma sheet, J. Geophys. Res., 108, 1015, doi: 10.1029/2002JA009557.
dc.identifier.citedreferenceSonnerup, B. U., and L. J. Cahill ( 1967 ), Magnetopause structure and attitude from explorer 12 observations, J. Geophys. Res., 72 ( 1 ), 171 â 183, doi: 10.1029/JZ072i001p00171.
dc.identifier.citedreferenceViberg, H., Y. V. Khotyaintsev, A. Vaivads, M. André, H. S. Fu, and N. Cornilleauâ Wehrlin ( 2014 ), Whistler mode waves at magnetotail dipolarization fronts, J. Geophys. Res. Space Physics, 119, 2605 â 2611, doi: 10.1002/2014JA019892.
dc.identifier.citedreferenceVolwerk, M., et al. ( 2008 ), Magnetotail dipolarization and associated current systems observed by Cluster and Double Star, J. Geophys. Res., 113, A08S90, doi: 10.1029/2007JA012729.
dc.identifier.citedreferenceVörös, Z., W. Baumjohann, R. Nakamura, M. Volwerk, and A. Runov ( 2006 ), Bursty bulk flow driven turbulence in the Earth’s plasma sheet, Space Sci. Rev., 122, 301 â 311, doi: 10.1007/s11214-006-6987-7.
dc.identifier.citedreferenceVörös, Z., et al. ( 2004 ), Magnetic turbulence in the plasma sheet, J. Geophys. Res., 109, A11215, doi: 10.1029/2004JA010404.
dc.identifier.citedreferenceWu, M., M. Volwerk, Q. Lu, Z. Vörös, R. Nakamura, and T. Zhang ( 2013 ), The proton temperature anisotropy associated with bursty bulk flows in the magnetotail, J. Geophys. Res. Space Physics, 118, 4875 â 4883, doi: 10.1002/jgra.50451.
dc.identifier.citedreferenceWu, M., C. Huang, Q. Lu, M. Volwerk, R. Nakamura, Z. Vörös, T. Zhang, and S. Wang ( 2015 ), In situ observations of multistage electron acceleration driven by magnetic reconnection, J. Geophys. Res. Space Physics, 120, 6320 â 6331, doi: 10.1002/2015JA021165.
dc.identifier.citedreferenceZhou, M., M. Ashourâ Abdalla, X. Deng, D. Schriver, M. Elâ Alaoui, and Y. Pang ( 2009 ), THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the nearâ Earth magnetotail, Geophys. Res. Lett., 36, L20107, doi: 10.1029/2009GL040663.
dc.identifier.citedreferenceZhou, X.â Z., V. Angelopoulos, V. A. Sergeev, and A. Runov ( 2010 ), Accelerated ions ahead of earthward propagating dipolarization fronts, J. Geophys. Res., 115, A00I03, doi: 10.1029/2010JA015481.
dc.identifier.citedreferenceChaston, C. C., J. W. Bonnell, L. Clausen, and V. Angelopoulos ( 2012 ), Energy transport by kineticâ scale electromagnetic waves in fast plasma sheet flows, J. Geophys. Res., 117, A09202, doi: 10.1029/2012JA017863.
dc.identifier.citedreferenceAngelopoulos, V., A. Runov, X.â Z. Zhou, D. L. Turner, S. A. Kiehas, S.â S. Li, and I. Shinohara ( 2013 ), Electromagnetic energy conversion at reconnection fronts, Science, 341 ( 6153 ), 1478 â 1482, doi: 10.1126/science.1236992.
dc.identifier.citedreferenceBalikhin, M. A., A. Runov, S. N. Walker, M. Gedalin, I. Dandouras, Y. Hobara, and A. Fazakerley ( 2014 ), On the fine structure of dipolarization fronts, J. Geophys. Res. Space Physics, 119, 6367 â 6385, doi: 10.1002/2014JA019908.
dc.identifier.citedreferenceBaumjohann, W. ( 1993 ), The near Earth plasma sheetâ An AMPTE/IRM perspective, Space Sci. Rev., 64, 141 â 163, doi: 10.1007/BF00819660.
dc.identifier.citedreferenceBaumjohann, W., R. Schödel, and R. Nakamura ( 2002 ), Bursts of fast magnetotail flux transport, Adv. Space Res., 30, 2241 â 2246, doi: 10.1016/S0273-1177(02)80234-4.
dc.identifier.citedreferenceBurch, J. L., T. E. Moore, R. B. Torbert, and B. L. Giles ( 2016 ), Magnetospheric multiscale overview and science objectives, Space Sci. Rev., 199 ( 1 ), 5 â 21, doi: 10.1007/s11214-015-0164-9.
dc.identifier.citedreferenceDeng, X., M. Ashourâ Abdalla, M. Zhou, R. Walker, M. Elâ Alaoui, V. Angelopoulos, R. E. Ergun, and D. Schriver ( 2010 ), Wave and particle characteristics of earthward electron injections associated with dipolarization fronts, J. Geophys. Res., 115, A09225, doi: 10.1029/2009JA015107.
dc.identifier.citedreferenceErgun, R. E., K. A. Goodrich, J. E. Stawarz, L. Andersson, and V. Angelopoulos ( 2015 ), Largeâ amplitude electric fields associated with bursty bulk flow braking in the Earth’s plasma sheet, J. Geophys. Res. Space Physics, 120, 1832 â 1844, doi: 10.1002/2014JA020165.
dc.identifier.citedreferenceErgun, R. E., et al. ( 2016 ), The axial double probe and fields signal processing for the mms mission, Space Sci. Rev., 199 ( 1 ), 167 â 188, doi: 10.1007/s11214-014-0115-x.
dc.identifier.citedreferenceFu, H. S., Y. V. Khotyaintsev, M. André, and A. Vaivads ( 2011 ), Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts, Geophys. Res. Lett., 38, L16104, doi: 10.1029/2011GL048528.
dc.identifier.citedreferenceFu, H. S., Y. V. Khotyaintsev, A. Vaivads, M. André, and S. Y. Huang ( 2012a ), Occurrence rate of earthwardâ propagating dipolarization fronts, Geophys. Res. Lett., 39, L10101, doi: 10.1029/2012GL051784.
dc.identifier.citedreferenceFu, H. S., Y. V. Khotyaintsev, A. Vaivads, M. André, and S. Y. Huang ( 2012b ), Electric structure of dipolarization front at subâ proton scale, Geophys. Res. Lett., 39, L06105, doi: 10.1029/2012GL051274.
dc.identifier.citedreferenceFu, H. S., Y. V. Khotyaintsev, A. Vaivads, M. André, V. A. Sergeev, S. Y. Huang, E. A. Kronberg, and P. W. Daly ( 2012c ), Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview, J. Geophys. Res., 117, A12221, doi: 10.1029/2012JA018141.
dc.identifier.citedreferenceFu, H. S., et al. ( 2013 ), Dipolarization fronts as a consequence of transient reconnection: In situ evidence, Geophys. Res. Lett., 40, 6023 â 6027, doi: 10.1002/2013GL058620.
dc.identifier.citedreferenceFu, H. S., et al. ( 2014 ), Whistlerâ mode waves inside flux pileup region: Structured or unstructured?, J. Geophys. Res. Space Physics, 119, 9089 â 9100, doi: 10.1002/2014JA020204.
dc.identifier.citedreferenceHuang, S. Y., M. Zhou, X. H. Deng, Z. G. Yuan, Y. Pang, Q. Wei, W. Su, H. M. Li, and Q. Q. Wang ( 2012 ), Kinetic structure and wave properties associated with sharp dipolarization front observed by cluster, Ann. Geophys., 30 ( 1 ), 97 â 107, doi: 10.5194/angeo-30-97-2012.
dc.identifier.citedreferenceHuang, S. Y., et al. ( 2012 ), Observations of turbulence within reconnection jet in the presence of guide field, Geophys. Res. Lett., 39, L11104, doi: 10.1029/2012GL052210.
dc.identifier.citedreferenceHuang, S. Y., et al. ( 2015a ), Observations of largeâ amplitude electromagnetic waves and associated waveâ particle interactions at the dipolarization front in the Earth’s magnetotail: A case study, J. Atmos. Sol. Terr. Phys., 129, 119 â 127, doi: 10.1016/j.jastp.2015.05.007.
dc.identifier.citedreferenceHuang, S. Y., et al. ( 2015b ), Electromagnetic energy conversion at dipolarization fronts: Multispacecraft results, J. Geophys. Res. Space Physics, 120, 4496 â 4502, doi: 10.1002/2015JA021083.
dc.identifier.citedreferenceHuang, S. Y., et al. ( 2015 ), Kinetic simulations of secondary reconnection in the reconnection jet, J. Geophys. Res. Space Physics, 120, 6188 â 6198, doi: 10.1002/2014JA020969.
dc.identifier.citedreferenceJuusola, L., N. Ã Stgaard, E. Tanskanen, N. Partamies, and K. Snekvik ( 2011 ), Earthward plasma sheet flows during substorm phases, J. Geophys. Res., 116, A10228, doi: 10.1029/2011JA016852.
dc.identifier.citedreferenceKhotyaintsev, Y. V., C. M. Cully, A. Vaivads, M. André, and C. J. Owen ( 2011 ), Plasma jet braking: Energy dissipation and nonadiabatic electrons, Phys. Rev. Lett., 106, 165001, doi: 10.1103/PhysRevLett.106.165001.
dc.identifier.citedreferenceLeâ Contel, O., et al. ( 2009 ), Quasiâ parallel whistler mode waves observed by THEMIS during nearâ Earth dipolarizations, Ann. Geophys., 27 ( 6 ), 2259 â 2275, doi: 10.5194/angeo-27-2259-2009.
dc.identifier.citedreferenceLeâ Contel, O., et al. ( 2016 ), The searchâ coil magnetometer for MMS, Space Sci. Rev., 199, 257 â 282, doi: 10.1007/s11214-014-0096-9.
dc.identifier.citedreferenceLee, L. C. ( 1995 ), A Review of Magnetic Reconnection: MHD Models, AGU, Washington, D.â C.
dc.identifier.citedreferenceLi, H., M. Zhou, X. Deng, Z. Yuan, L. Guo, X. Yu, Y. Pang, and S. Huang ( 2015 ), A statistical study on the whistler waves behind dipolarization fronts, J. Geophys. Res. Space Physics, 120, 1086 â 1095, doi: 10.1002/2014JA020474.
dc.identifier.citedreferenceLi, W., J. Bortnik, R. M. Thorne, and V. Angelopoulos ( 2011 ), Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations, J. Geophys. Res., 116, A12205, doi: 10.1029/2011JA017035.
dc.identifier.citedreferenceLindqvist, P.â A., et al. ( 2016 ), The spinâ plane double probe electric field instrument for MMS, Space Sci. Rev., 199 ( 1 ), 137 â 165, doi: 10.1007/s11214-014-0116-9.
dc.identifier.citedreferenceLu, S., Q. Lu, Y. Lin, X. Wang, Y. Ge, R. Wang, M. Zhou, H. Fu, C. Huang, M. Wu, and S. Wang ( 2015 ), Dipolarization fronts as earthward propagating flux ropes: A threeâ dimensional global hybrid simulation, J. Geophys. Res. Space Physics, 120, 6286 â 6300, doi: 10.1002/2015JA021213.
dc.identifier.citedreferenceNakamura, M. S., H. Matsumoto, and M. Fujimoto ( 2002 ), Interchange instability at the leading part of reconnection jets, Geophys. Res. Lett., 29, 1247, doi: 10.1029/2001GL013780.
dc.identifier.citedreferenceOhtani, S.â I., M. A. Shay, and T. Mukai ( 2004 ), Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and twoâ fluid simulations, J. Geophys. Res., 109, A03210, doi: 10.1029/2003JA010002.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.