Show simple item record

Use of Monte Carlo Simulations to Determine Optimal Carbapenem Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy

dc.contributor.authorLewis, Susan J.
dc.contributor.authorKays, Michael B.
dc.contributor.authorMueller, Bruce A.
dc.date.accessioned2016-10-17T21:17:37Z
dc.date.available2017-12-01T21:54:11Zen
dc.date.issued2016-10
dc.identifier.citationLewis, Susan J.; Kays, Michael B.; Mueller, Bruce A. (2016). "Use of Monte Carlo Simulations to Determine Optimal Carbapenem Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy." The Journal of Clinical Pharmacology 56(10): 1277-1287.
dc.identifier.issn0091-2700
dc.identifier.issn1552-4604
dc.identifier.urihttps://hdl.handle.net/2027.42/134122
dc.description.abstractPharmacokinetic/pharmacodynamic analyses with Monte Carlo simulations (MCSs) can be used to integrate prior information on model parameters into a new renal replacement therapy (RRT) to develop optimal drug dosing when pharmacokinetic trials are not feasible. This study used MCSs to determine initial doripenem, imipenem, meropenem, and ertapenem dosing regimens for critically ill patients receiving prolonged intermittent RRT (PIRRT). Published body weights and pharmacokinetic parameter estimates (nonrenal clearance, free fraction, volume of distribution, extraction coefficients) with variability were used to develop a pharmacokinetic model. MCS of 5000 patients evaluated multiple regimens in 4 different PIRRT effluent/duration combinations (4 L/h × 10 hours or 5 L/h × 8 hours in hemodialysis or hemofiltration) occurring at the beginning or 14–16 hours after drug infusion. The probability of target attainment (PTA) was calculated using ≥40% free serum concentrations above 4 times the minimum inhibitory concentration (MIC) for the first 48 hours. Optimal doses were defined as the smallest daily dose achieving ≥90% PTA in all PIRRT combinations. At the MIC of 2 mg/L for Pseudomonas aeruginosa, optimal doses were doripenem 750 mg every 8 hours, imipenem 1 g every 8 hours or 750 mg every 6 hours, and meropenem 1 g every 12 hours or 1 g pre‐ and post‐PIRRT. Ertapenem 500 mg followed by 500 mg post‐PIRRT was optimal at the MIC of 1 mg/L for Streptococcus pneumoniae. Incorporating data from critically ill patients receiving RRT into MCS resulted in markedly different carbapenem dosing regimens in PIRRT from those recommended for conventional RRTs because of the unique drug clearance characteristics of PIRRT. These results warrant clinical validation.
dc.publisherAstraZeneca Pharmaceuticals, LP
dc.publisherWiley Periodicals, Inc.
dc.subject.otherdoripenem
dc.subject.otherpharmacokinetics
dc.subject.otherprolonged intermittent renal replacement therapy
dc.subject.othermeropenem
dc.subject.otherimipenem
dc.subject.otherertapenem
dc.titleUse of Monte Carlo Simulations to Determine Optimal Carbapenem Dosing in Critically Ill Patients Receiving Prolonged Intermittent Renal Replacement Therapy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPediatrics
dc.subject.hlbsecondlevelPharmacy and Pharmacology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134122/1/jcph727.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134122/2/jcph727_am.pdf
dc.identifier.doi10.1002/jcph.727
dc.identifier.sourceThe Journal of Clinical Pharmacology
dc.identifier.citedreferenceShorr AF. Review of studies of the impact on Gram‐negative bacterial resistance on outcomes in the intensive care unit. Crit Care Med. 2009; 37: 1463 – 1469.
dc.identifier.citedreferenceMerrem (meropenem) [package insert]. Wilmington, DE: AstraZeneca Pharmaceuticals, LP.; 2014.
dc.identifier.citedreferencePrimaxin (imipenem) [package insert]. Whitehouse Station, NJ: Merck & Co., Inc.; 2014.
dc.identifier.citedreferenceDoribax (doripenem) [package insert]. Raritan, NJ: Ortho‐McNeil Janssen Pharmaceuticals, Inc.; 2013.
dc.identifier.citedreferenceInvanz (ertapenem) [package insert]. Whitehouse Station, NJ: Merck & Co., Inc.; 2012.
dc.identifier.citedreferenceNehus EJ, Mouksassi S, Vinks AA, Goldstein S. Meropenem in children receiving continuous renal replacement therapy: clinical trial simulations using realistic covariates. J Clin Pharmacol. 2014; 54: 1421 – 1428.
dc.identifier.citedreferenceFagon JY, Chastre J, Domart Y, et al. Nosocomial pneumonia in patients receiving continuous mechanical ventilation: prospective analysis of 52 episodes with use of a protected specimen brush and quantitative culture techniques. Am Rev Respir Dis. 1989; 139: 877 – 884.
dc.identifier.citedreferenceClinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; 24th informational supplement. M100 – S24. Wayne, PA: Clinical and Laboratory Standards Institute; 2014.
dc.identifier.citedreferenceJob ML, Dretler RH. Seizure activity with imipenem therapy: incidence and risk factors. DICP. 1990; 24: 467 – 469.
dc.identifier.citedreferenceFica AE, Abusada NJ. Seizures associated with ertapenem use in patients with CNS disorders and renal insufficiency. Scand J Infect Dis. 2008; 40: 983 – 985.
dc.identifier.citedreferenceZelenitsky SA, Ariano RE, Zhanel GG. Pharmacodynamics of empirical antibiotic monotherapies for an intensive care unit (ICU) population based on Canadian surveillance data. J Antimicrob Chemother. 2011; 66 ( 2 ): 343 – 349.
dc.identifier.citedreferenceZelenitsky SA, Ariano RE, McCrae ML, Vercaigne LM. Initial vancomycin dosing protocol to achieve therapeutic serum concentrations in patients undergoing hemodialysis. Clin Infect Dis. 2012; 55 ( 4 ): 527 – 533.
dc.identifier.citedreferenceNehus EJ, Mizuno T, Cox S, Goldstein SL, Vinks AA. Pharmacokinetics of meropenem in children receiving continuous renal replacement therapy: validation of clinical trial simulations. J Clin Pharmacol. 2016; 56 ( 3 ): 291 – 297.
dc.identifier.citedreferenceLewis SJ, Mueller BA. Antibiotic dosing in patients with acute kidney injury: “enough but not too much.” J Intensive Care Med. 2016; 31 ( 3 ): 164 – 176.
dc.identifier.citedreferenceSeyler L, Cotton F, Taccone FS, et al. Recommended β‐lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care. 2011; 15: R137.
dc.identifier.citedreferenceBeumier M, Casu GS, Hites M, et al. β‐lactam antibiotic concentrations during continuous renal replacement therapy. Crit Care. 2014; 18: R105.
dc.identifier.citedreferenceMueller BA, Scoville BA. Adding to the armamentarium: antibiotic dosing in extended dialysis. Clin J Am Soc Nephrol. 2012; 7: 373 – 375.
dc.identifier.citedreferenceSowinski KM, Magner SJ, Lucksiri A, Scott MK, Hamburger RJ, Mueller BA. Influence of hemodialysis on gentamicin pharmacokinetics, removal during hemodialysis, and recommended dosing. Clin J Am Soc Nephrol. 2008; 3: 355 – 361.
dc.identifier.citedreferenceMei JP, Ali‐Moghaddam A, Mueller BA. Survey of pharmacists’ antibiotic dosing recommendations for sustained low‐efficiency dialysis. Int J Clin Pharm. 2015; 38: 127 – 134.
dc.identifier.citedreferencePalevsky PM, Zhang JH, O’Connor TZ, et al. Intensity of renal support in critically ill patients with acute kidney injury. N Engl J Med. 2008; 359: 7 – 20.
dc.identifier.citedreferenceBellomo R, Cass A, Cole L, et al. Intensity of continuous renal‐replacement therapy in critically ill patients. N Engl J Med. 2009; 361: 1627 – 1638.
dc.identifier.citedreferenceDeshpande P, Chen J, Gofran A, Murea M, Golestaneh L. Meropenem removal in critically ill patients undergoing sustained low‐efficiency dialysis (SLED). Nephrol Dial Transplant. 2010; 25: 2632 – 2636.
dc.identifier.citedreferenceBurkhardt O, Hafer C, Langhoff A, et al. Pharmacokinetics of ertapenem in critically ill patients with acute renal failure undergoing extended daily dialysis. Nephrol Dial Transplant. 2009; 24: 267 – 271.
dc.identifier.citedreferenceTanoue K, Nishi K, Kadowaki D, Hirata S. Removal of doripenem during hemodialysis and the optimum dosing regimen for patients undergoing hemodialysis. Ther Apher Dial. 2011; 15: 327 – 233.
dc.identifier.citedreferenceKrueger WA, Schroeder TH, Hutchison M, et al. Pharmacokinetics of meropenem in critically ill patients with acute renal failure treated by continuous hemodiafiltration. Antimicrob Agents Chemother. 1998; 42: 2421 – 2424.
dc.identifier.citedreferenceGiles LJ, Jennings AC, Thompson AH, Creed G, Beale RJ, McLuckie A. Pharmacokinetics of meropenem in intensive care unit patients receiving continuous veno‐venous hemofiltration or hemodiafiltration. Crit Care Med. 2000; 28: 632 – 637.
dc.identifier.citedreferenceVervers TF, van Dijk A, Vinks SA, et al. Pharmacokinetics and dosing regimen of meropenem in critically ill patients receiving continuous venovenous hemofiltration. Crit Care Med. 2000; 28: 3412 – 3416.
dc.identifier.citedreferenceBagshaw SM, Uchino S, Bellomo R, et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol. 2007; 2: 431 – 419.
dc.identifier.citedreferenceDellinger RP, Levy MM, Rhodes A, et al. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med. 2013; 41: 580 – 637.
dc.identifier.citedreferenceHarris LE, Reaves AB, Krauss AG, Griner J, Hudson JQ. Evaluation of antibiotic prescribing patterns in patients receiving sustained low‐efficiency dialysis: opportunities for pharmacists. Int J Pharm Pract. 2013; 21: 55 – 61.
dc.identifier.citedreferenceKumar VA, Craig M, Depner TA, Yeun JY. Extended daily dialysis: a new approach to renal replacement for acute renal failure in the intensive care unit. Am J Kidney Dis. 2000; 36 ( 2 ): 294 – 300.
dc.identifier.citedreferenceBellomo R, Baldwin I, Fealy N. Prolonged intermittent renal replacement therapy in the intensive care unit. Crit Care Resusc. 2002; 4 ( 4 ): 281 – 290.
dc.identifier.citedreferenceMarshall MR, Creamer JM, Foster M, et al. Mortality rate comparison after switching from continuous to prolonged intermittent renal replacement for acute kidney injury in three intensive care units from different countries. Nephrol Dial Transplant. 2011; 26 ( 7 ): 2169 – 2175.
dc.identifier.citedreferenceDuran PA, Concepcion LA. Survival after acute kidney injury requiring dialysis: long‐term follow up. Hemodial Int. 2014; 18 ( Suppl 1 ): S1 – S86.
dc.identifier.citedreferenceZhang L, Yang J, Eastwood GM, Zhu G, Tanaka A, Bellomo R. Extended daily dialysis versus continuous renal replacement therapy for acute kidney injury: a meta‐analysis. Am J Kidney Dis. 2015; 66 ( 2 ): 322 – 330.
dc.identifier.citedreferenceRoberts JA, Mehta RL, Lipman J. Sustained low efficiency dialysis allows rational renal replacement therapy, but dose it allow rational drug dosing? Crit Care Med. 2011; 39 ( 3 ): 602 – 603.
dc.identifier.citedreferenceNolin TD, Aronoff GR, Fissell WH, et al. Pharmacokinetic assessment in patients receiving continuous RRT: perspectives from the Kidney health initiative. Clin J Am Soc Nephrol. 2015; 10: 159 – 164.
dc.identifier.citedreferenceBradley JS, Garonzik SM, Forrest A, Bhavnani SM. Pharmacokinetics, pharmacodynamics, and Monte Carlo simulation: selecting the best antimicrobial dose to treat an infection. Pediatr Infect Dis J. 2010; 29 ( 11 ): 1043 – 1046.
dc.identifier.citedreferenceRoberts JA, Kirkpatrick CM, Lipman J. Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother. 2011; 66: 227 – 231.
dc.identifier.citedreferenceColardyn F. Appropriate and timely empirical antimicrobial treatment of ICU infections – a role of carbapenems. Acta Clin Belg. 2005; 60: 51 – 62.
dc.identifier.citedreferenceTamma PD, Han JH, Rock C, et al. Carbapenem therapy is associated with improved survival compared with piperacillin‐tazobactam for patients with extended‐spectrum β‐lactamase bacteremia. Clin Infect Dis. 2015; 60: 1319 – 1325.
dc.identifier.citedreferenceCraig WA, Ebert SC. Killing and regrowth of bacteria in vivo: a review. Scan J Infect Dis. 1990; 74 ( S ): 63 – 70.
dc.identifier.citedreferenceDrusano GL. Antimicrobial pharmacodynamics: critical interactions of ‘bug and drug ’. Nat Rev Microbiol. 2004; 2: 289 – 300.
dc.identifier.citedreferenceGashti CN, Salcedo S, Robinson V, Rodby RA. Accelerated venovenous hemofiltration: early technical and clinical experience. Am J Kidney Dis. 2008; 51: 804 – 810.
dc.identifier.citedreferenceThalhammer F, Schenk P, Burgmann H, et al. Single‐dose pharmacokinetics of meropenem during continuous venovenous hemofiltration. Antimicrob Agents Chemother. 1998; 42: 2417 – 2420.
dc.identifier.citedreferenceRobatel C, Decosterd LA, Biollaz J, Eckert P, Schaller MD, Buclin T. Pharmacokinetics and dosage adaptation of meropenem during continuous venovenous hemodiafiltration in critically ill patients. J Clin Pharmacol. 2003; 43: 1329 – 1340.
dc.identifier.citedreferenceIsla A, Maynar J, Sánchez‐Izquierdo JA, et al. Meropenem and continuous renal replacement therapy: in vitro permeability of 2 continuous renal replacement therapy membranes and influence of patient renal function on the pharmacokinetics in critically ill patients. J Clin Pharmacol. 2005; 45: 1294 – 1304.
dc.identifier.citedreferenceBilgrami I, Roberts JA, Wallis SC, et al. Meropenem dosing in critically ill patients with sepsis receiving high‐volume continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2010; 54: 2974 – 2978.
dc.identifier.citedreferenceKeller E, Fecht H, Böhler J, Schollmeyer P. Single‐dose kinetics of imipenem/cilastatin during continuous arteriovenous haemofiltration in intensive care patients. Nephrol Dial Transplant. 1989; 4: 640 – 645.
dc.identifier.citedreferenceMueller BA, Scarim SK, Macias WL. Comparison of imipenem pharmacokinetics in patients with acute or chronic renal failure treated with continuous hemofiltration. Am J Kidney Dis. 1993; 21: 172 – 179.
dc.identifier.citedreferenceHashimoto S, Honda M, Yamaguchi M, Sekimoto M, Tanaka Y. Pharmacokinetics of imipenem and cilastatin during continuous venovenous hemodialysis in patients who are critically ill. ASAIO J. 1997; 43: 84 – 88.
dc.identifier.citedreferenceFish DN, Teitelbaum I, Abraham E. Pharmacokinetics and pharmacodynamics of imipenem during continuous renal replacement therapy in critically ill patients. Antimicrob Agents Chemother. 2005; 49: 2421 – 2428.
dc.identifier.citedreferenceHidaka S, Goto K, Hagiwara S, Iwasaka H, Noguchi T. Doripenem pharmacokinetics in critically ill patients receiving continuous hemodiafiltration (CHDF). Yakugaku Zasshi. 2010; 130: 87 – 94.
dc.identifier.citedreferenceRoberts JA, Udy AA, Bulitta JB, et al. Doripenem population pharmacokinetics and dosing requirements for critically ill patients receiving continuous venovenous haemodiafiltration. J Antimicrob Chemother. 2014; 69: 2508 – 2516.
dc.identifier.citedreferenceBurkhardt O, Hafer C, Langhoff A, et al. Pharmacokinetics of ertapenem in critically ill patients with acute renal failure undergoing extended daily dialysis. Nephrol Dial Transplant. 2009; 24: 267 – 271.
dc.identifier.citedreferenceEyler RF, Vilay AM, Nader AM, et al. Pharmacokinetics of ertapenem in critically ill patients receiving continuous venovenous hemodialysis or hemodiafiltration. Antimicrob Agents Chemother. 2014; 58: 1320 – 1326.
dc.identifier.citedreferenceLiebchen U, Kratzer A, Wicha SG, Kees F, Kloft C, Kees MG. Unbound fraction of ertapenem in intensive care unit patients. J Antimicrob Chemother. 2014; 69: 3108 – 3111.
dc.identifier.citedreferenceTegeder I, Neumann F, Bremer F, Brune K, Lötsch J, Geisslinger G. Pharmacokinetics of meropenem in critically ill patients with acute renal failure undergoing continuous venovenous hemofiltration. Clin Pharmacol Ther. 1999; 65: 50 – 57.
dc.identifier.citedreferenceVos MC, Vincent HH, Yzerman EP. Clearance of imipenem/cilastatin in acute renal failure patients treated by continuous hemodiafiltration (CAVHD). Intensive Care Med. 1992; 18: 282 – 285.
dc.identifier.citedreferenceTegeder I, Bremer F, Oelkers R, et al. Pharmacokinetics of imipenem‐cilastatin in critically ill patients undergoing continuous venovenous hemofiltration. Antimicrob Agents Chemother. 1997; 41: 2640 – 2645.
dc.identifier.citedreferenceAfshartous D, Bauer SR, Connor MJ, et al. Pharmacokinetics and pharmacodynamics of imipenem and meropenem in critically ill patients treated with continuous venovenous hemodialysis. Am J Kidney Dis. 2014; 63: 170 – 171.
dc.identifier.citedreferenceMeyer MM, Munar MY, Kohlhepp SJ, Bryant RE. Meropenem pharmacokinetics in a patient with multiorgan failure from meningococcemia undergoing continuous venovenous hemodiafiltration. Am J Kidney Dis. 1999; 33: 790 – 795.
dc.identifier.citedreferenceLanggartner J, Vasold A, Glück T, Reng M, Kees F. Pharmacokinetics of meropenem during intermittent and continuous intravenous application in patients treated by continuous renal replacement therapy. Intensive Care Med. 2008; 34: 1091 – 1096.
dc.identifier.citedreferenceKielstein JT, Czock D, Schöpke T, et al. Pharmacokinetics and total elimination of meropenem and vancomycin in intensive care unit patients undergoing extended daily dialysis. Crit Care Med. 2006; 34: 51 – 56.
dc.identifier.citedreferenceLeroy A, Fillastre JP, Etienne I, Borsa‐Lebás F, Humbert G. Pharmacokinetics of meropenem in subjects with renal insufficiency. Eur J Clin Pharmacol. 1992; 42: 535 – 538.
dc.identifier.citedreferenceChristensson BA, Nilsson‐Ehle I, Hutchison M, Haworth SJ, Oqvist B, Norrby SR. Pharmacokinetics of meropenem in subjects with various degrees of renal impairment. Antimicrob Agents Chemother. 1992; 36: 1532 – 1537.
dc.identifier.citedreferenceVerpooten GA, Verbist L, Buntinx AP, Entwistle LA, Jones KH, De Broe ME. The pharmacokinetics of imipenem (thienamycin‐formamidine) and the renal dehydropeptidase inhibitor cilastatin sodium in normal subjects and patients with renal failure. Br J Clin Pharmacol. 1984; 18: 183 – 193.
dc.identifier.citedreferenceKonishi K, Suzuki H, Saruta T, et al. Removal of imipenem and cilastatin by hemodialysis in patients with end‐stage renal failure. Antimicrob Agents Chemother. 1991; 35: 1616 – 1620.
dc.identifier.citedreferenceTroyanov S, Cardinal J, Geadah D, et al. Solute clearances during continuous venovenous haemofiltration at various ultrafiltration flow rates using Multiflow‐100 and HF1000 filters. Nephrol Dial Transplant. 2003; 18: 961 – 966.
dc.identifier.citedreferenceGashti CA, Rodby RA, Huang Z, Gao D, Zhang W. Effects of high blood flow and high pre‐dilution replacement fluid rates on small solute clearances in hemofiltration. Blood Purif. 2011; 32: 266 – 270.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.