Show simple item record

Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions

dc.contributor.authorWinslow, Reka M.
dc.contributor.authorLugaz, Noé
dc.contributor.authorSchwadron, Nathan A.
dc.contributor.authorFarrugia, Charles J.
dc.contributor.authorYu, Wenyuan
dc.contributor.authorRaines, Jim M.
dc.contributor.authorMays, M. Leila
dc.contributor.authorGalvin, Antoinette B.
dc.contributor.authorZurbuchen, Thomas H.
dc.date.accessioned2016-10-17T21:17:39Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationWinslow, Reka M.; Lugaz, Noé ; Schwadron, Nathan A.; Farrugia, Charles J.; Yu, Wenyuan; Raines, Jim M.; Mays, M. Leila; Galvin, Antoinette B.; Zurbuchen, Thomas H. (2016). "Longitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions." Journal of Geophysical Research: Space Physics 121(7): 6092-6106.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134123
dc.description.abstractWe use data on an interplanetary coronal mass ejection (ICME) seen by MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) and STEREO A starting on 29 December 2011 in a near‐perfect longitudinal conjunction (within 3°) to illustrate changes in its structure via interaction with the solar wind in less than 0.6 AU. From force‐free field modeling we infer that the orientation of the underlying flux rope has undergone a rotation of ∼80° in latitude and ∼65° in longitude. Based on both spacecraft measurements as well as ENLIL model simulations of the steady state solar wind, we find that interaction involving magnetic reconnection with corotating structures in the solar wind dramatically alters the ICME magnetic field. In particular, we observed a highly turbulent region with distinct properties within the flux rope at STEREO A, not observed at MESSENGER, which we attribute to interaction between the ICME and a heliospheric plasma sheet/current sheet during propagation. Our case study is a concrete example of a sequence of events that can increase the complexity of ICMEs with heliocentric distance even in the inner heliosphere. The results highlight the need for large‐scale statistical studies of ICME events observed in conjunction at different heliocentric distances to determine how frequently significant changes in flux rope orientation occur during propagation. These results also have significant implications for space weather forecasting and should serve as a caution on using very distant observations to predict the geoeffectiveness of large interplanetary transients.Key PointsICME complexity increases due to interaction with corotating structures in the solar windMagnetic reconnection between ICME and HPS/HCS alters the magnetic topology of the ICME flux ropeCaution on using distant observations to predict the geoeffectiveness of interplanetary transients
dc.publisherWiley Periodicals, Inc.
dc.publisherp. 91, AGU
dc.subject.otherHCS
dc.subject.otherICME
dc.subject.othermagnetic topology
dc.subject.otherHPS
dc.titleLongitudinal conjunction between MESSENGER and STEREO A: Development of ICME complexity through stream interactions
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134123/1/jgra52739.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134123/2/jgra52739_am.pdf
dc.identifier.doi10.1002/2015JA022307
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRichardson, I. G., and H. V. Cane ( 2010 ), Near‐Earth interplanetary coronal mass ejections during solar cycle 23 (1996–2009): Catalog and summary of properties, Sol. Phys., 264, 189 – 237.
dc.identifier.citedreferenceMasson, S., S. K. Antiochos, and C. R. DeVore ( 2013 ), A model for the escape of solar‐flare‐accelerated particles, Astrophys. J., 771, 82, doi: 10.1088/0004‐637X/771/2/82.
dc.identifier.citedreferenceMikic, Z., J. A. Linker, D. D. Schnack, R. Lionell o, and A. Tarditi ( 1999 ), Magnetohydrodynamic modeling of the global solar corona, Phys. Plasmas, 6, 2217 – 2224.
dc.identifier.citedreferenceMöstl, C., C. Miklenic, C. J. Farrugia, M. Temmer, A. Veronig, A. B. Galvin, and H. K. Biernat ( 2008 ), Two‐spacecraft reconstruction of a magnetic cloud and comparison to its solar source, Ann. Geophys., 26, 3139 – 3152, doi: 10.5194/angeo‐26‐3139‐2008.
dc.identifier.citedreferenceMöstl, C., et al. ( 2012 ), Multi‐point shock and flux rope analysis of multiple interplanetary coronal mass ejections around 2010 August 1 in the inner heliosphere, Astrophys. J., 758, 10.
dc.identifier.citedreferenceMüller, D., and O. C. St. Cyr ( 2013 ), The solar orbiter mission, Proc. SPIE, 8862, 88620E.
dc.identifier.citedreferenceNieves‐Chinchilla, T., R. Colaninno, A. Vourlidas, A. Szabo, R. P. Lepping, S. A. Boardsen, B. J. Anderson, and H. Korth ( 2012 ), Remote and in situ observations of an unusual Earth‐directed coronal mass ejection from multiple viewpoints, J. Geophys. Res., 117, A06106, doi: 10.1029/2011JA017243.
dc.identifier.citedreferenceOdstrcil, D. ( 2003 ), Modeling 3‐D solar wind structure, Adv. Space Res., 32, 497 – 506.
dc.identifier.citedreferencePrise, A. J., L. K. Harra, S. A. Matthews, C. S. Arridge, and N. Achilleos ( 2015 ), Analysis of a coronal mass ejection and corotating interaction region as they travel from the Sun passing Venus, Earth, Mars, and Saturn, J. Geophys. Res. Space Physics, 120, 1566 – 1588, doi: 10.1002/2014JA020256.
dc.identifier.citedreferenceRichardson, I. G., and H. V. Cane ( 2004 ), The fraction of interplanetary coronal mass ejections that are magnetic clouds: Evidence for a solar cycle variation, Geophys. Res. Lett., 31, L18804, doi: 10.1029/2004GL020958.
dc.identifier.citedreferenceRodriguez, L., J. Woch, N. Krupp, M. Fränz, R. von Steiger, R. J. Forsyth, D. B. Reisenfeld, and K.‐H. Glassmeier ( 2004 ), A statistical study of oxygen freezing‐in temperature and energetic particles inside magnetic clouds observed by Ulysses, J. Geophys. Res., 109, A01108, doi: 10.1029/2003JA010156.
dc.identifier.citedreferenceRuffenach, A., et al. ( 2012 ), Multispacecraft observation of magnetic cloud erosion by magnetic reconnection during propagation, J. Geophys. Res., 117, A09101, doi: 10.1029/2012JA017624.
dc.identifier.citedreferenceRuffenach, A., et al. ( 2015 ), Statistical study of magnetic cloud erosion by magnetic reconnection, J. Geophys. Res. Space Physics, 120, 43 – 60, doi: 10.1002/2014JA020628.
dc.identifier.citedreferenceRouillard, A. P., et al. ( 2009 ), A solar storm observed from the Sun to Venus using the STEREO, Venus Express, and MESSENGER spacecraft, J. Geophys. Res., 114, A07106, doi: 10.1029/2008JA014034.
dc.identifier.citedreferenceRussell, C. T., R. L. McPherron, and R. K. Burton ( 1974 ), On the cause of geomagnetic storms, J. Geophys. Res., 79, 1105 – 1109.
dc.identifier.citedreferenceSchmidt, J. M., and P. J. Cargill ( 2003 ), Magnetic reconnection between a magnetic cloud and the solar wind magnetic field, J. Geophys. Res., 108, 1023, doi: 10.1029/2002JA009325.
dc.identifier.citedreferenceSchwartz, S. J. ( 1998 ), Shock and discontinuity normals, mach numbers, and related parameters, in Analysis Methods for Multi‐Spacecraft Data, vol. 1, edited by G. Paschmann and P. Daly, pp. 249 – 270, ISSI Sci. Rep. Ser., ESA/ISSI.
dc.identifier.citedreferenceSingh, A. K., D. Siingh, and R. P. Singh ( 2010 ), Space weather: Physics, effects, and predictability, Surv. Geophys., 31, 581 – 638, doi: 10.1007/s10712‐010‐9103‐1.
dc.identifier.citedreferenceTaubenschuss, U., N. V. Erkaev, H. K. Biernat, C. J. Farrugia, C. Möst, and U. V. Amerstorfer ( 2010 ), The role of magnetic handedness in magnetic cloud propagation, Ann. Geophys., 28, 1075 – 1100, doi: 10.5194/angeo‐28‐1075‐2010.
dc.identifier.citedreferenceThernisien, A. F. R. ( 2011 ), Implementation of graduated cylindrical shell model for the three‐dimensional reconstruction of coronal mass ejections, Astrophys. J. Suppl. Ser., 194, 33.
dc.identifier.citedreferenceThernisien, A. F. R., R. A. Howard, and A. Vourlidas ( 2006 ), Modeling of flux rope coronal mass ejections, Astrophys. J., 652, 763 – 773.
dc.identifier.citedreferenceTsurutani, B. T., B. E. Goldstein, W. D. Gonzalez, and F. Tang ( 1988 ), Comment on—A new method of forecasting geomagnetic activity and proton showers, by A. Hewish and P. J. Duffet‐Smith, Planet. Space Sci., 36, 205 – 206.
dc.identifier.citedreferenceVršnak, B., et al. ( 2013 ), Propagation of interplanetary coronal mass ejections: The drag‐based model, Sol. Phys., 285, 295 – 315.
dc.identifier.citedreferenceWang, Y., B. Wang, C. Shen, F. Shen, and N. Lugaz ( 2014 ), Deflected propagation of a coronal mass ejection from the corona to interplanetary space, J. Geophys. Res. Space Physics, 119, 5117 – 5132, doi: 10.1002/2013JA019537.
dc.identifier.citedreferenceWinslow, R. M., N. Lugaz, L. C. Philpott, N. A. Schwadron, C. J. Farrugia, B. J. Anderson, and C. W. Smith ( 2015 ), Interplanetary coronal mass ejections from MESSENGER orbital observations at Mercury, J. Geophys. Res. Space Physics, 120, 6101 – 6118, doi: 10.1002/2015JA021200.
dc.identifier.citedreferenceWinterhalter, D., E. J. Smith, M. E. Burton, N. Murphy, and D. J. McComas ( 1994 ), The heliospheric plasma sheet, J. Geophys. Res., 99, 6667 – 6680.
dc.identifier.citedreferenceZhang, J.‐Ch., M. W. Liemohn, J. U. Kozyra, B. J. Lynch, and T. H. Zurbuchen ( 2004 ), A statistical study of the geoeffectiveness of magnetic clouds during high solar activity years, J. Geophys. Res., 109, A09101, doi: 10.1029/2004JA010410.
dc.identifier.citedreferenceZurbuchen, T. H., and I. G. Richardson ( 2006 ), In‐situ solar wind and magnetic field signatures of interplanetary coronal mass ejections, Space Sci. Rev., 123, 31 – 43.
dc.identifier.citedreferenceAndrews, G. B., et al. ( 2007 ), The energetic particle and plasma spectrometer instrument on the MESSENGER spacecraft, Space Sci. Rev., 131, 523 – 556.
dc.identifier.citedreferenceBothmer, V., and R. Schwenn ( 1996 ), Signatures of fast CMEs in interplanetary space, Adv. Space Res., 17, 319 – 322.
dc.identifier.citedreferenceBurlaga, L. F. ( 1988 ), Magnetic clouds and force‐free fields with constant alpha, J. Geophys. Res., 93, 7217, doi: 10.1029/JA093iA07p07217.
dc.identifier.citedreferenceCane, H. V., and I. G. Richardson ( 2003 ), Interplanetary coronal mass ejections in the near‐Earth solar wind during 1996–2002, J. Geophys. Res., 108, 1156, doi: 10.1029/2002JA009817.
dc.identifier.citedreferenceDasso, S., C. H. Mandrini, P. Démoulin, and M. L. Luoni ( 2006 ), A new model‐independent method to compute magnetic helicity in magnetic clouds, Astron. Astrophys., 455, 349 – 359, doi: 10.1051/0004‐6361:20064806.
dc.identifier.citedreferenceDasso, S., M. S. Nakwacki, P. Demoulin, and C. H. Mandrini ( 2007 ), Progressive transformation of a flux rope to an ICME, Sol. Phys., 244, 115 – 137, doi: 10.1007/s11207‐007‐9034‐2.
dc.identifier.citedreferenceFarrugia, C. J., I. G. Richardson, L. F. Burlaga, R. P. Lepping, and V. A. Osherovich ( 1993 ), Simultaneous observations of solar MeV particles in a magnetic cloud and in the Earth’s northern tail lobe: Implications for the global field line topology of magnetic clouds and for the entry of solar particles into the magnetosphere during cloud passage, J. Geophys. Res., 98, 15,497 – 15,507.
dc.identifier.citedreferenceFarrugia, C. J., L. F. Burlaga, and R. P. Lepping ( 1997 ), Magnetic clouds and the quiet/storm effect at Earth: A review, in Magnetic Storms, Geophys. Monogr. Ser., vol. 98, edited by B. T. Tsurutani et al., p. 91, AGU, Washington, D. C.
dc.identifier.citedreferenceFermo, R. L., M. Opher, and J. F. Drake ( 2014 ), Magnetic reconnection in the interior of interplanetary coronal mass ejections, Phys. Rev. Lett., 113, 31101, doi: 10.1103/PhysRevLett.113.031101.
dc.identifier.citedreferenceFox, N. J., et al. ( 2015 ), The Solar Probe Plus mission: Humanity’s first visit to our star, Space Sci. Rev., 1 – 42, doi: 10.1007/s11214‐015‐0211‐6.
dc.identifier.citedreferenceGalvin, A. B., et al. ( 2008 ), The Plasma and Suprathermal Ion Composition (PLASTIC) investigation on the STEREO observatories, Space Sci. Rev., 136, 437 – 486, doi: 10.1007/s11214‐007‐9296‐x.
dc.identifier.citedreferenceGershman, D. J., et al. ( 2012 ), Solar wind alpha particles and heavy ions in the inner heliosphere observed with MESSENGER, J. Geophys. Res., 117, A00M02, doi: 10.1029/2012JA017829.
dc.identifier.citedreferenceGood, S. W., R. J. Forsyth, J. M. Raines, D. J. Gershman, J. A. Slavin, and T. H. Zurbuchen ( 2015 ), Radial evolution of a magnetic cloud: MESSENGER, STEREO, and Venus Express observations, Astrophys. J., 807, 177, doi: 10.1088/0004‐637X/807/2/177.
dc.identifier.citedreferenceGonzalez, W. D., and B. T. Tsurutani ( 1987 ), Criteria of interplanetary parameters causing intense magnetic storms ( D s t <− 100 n T ), Planet. Space Sci., 35, 1101 – 1109.
dc.identifier.citedreferencePalmerio, E., E. K. J. Kilpua, and N. P. Savani ( 2016 ), Planar magnetic structures in coronal mass ejection‐driven sheath regions, Ann. Geophys., 34, 313 – 322.
dc.identifier.citedreferenceGosling, J. T. ( 1990 ), Coronal mass ejections and magnetic flux ropes in interplanetary space, in Physics of Magnetic Flux Ropes, Geophys. Monogr., vol. 58, edited by E. R. Priest and L. C. Lee, pp. 343 – 364, AGU, Washington, D. C.
dc.identifier.citedreferenceGosling, J. T., J. Birn, and M. Hesse ( 1995 ), Three‐dimensional magnetic reconnection and the magnetic topology of coronal mass ejection events, Geophys. Res. Lett., 22, 869 – 872.
dc.identifier.citedreferenceGosling, J. T., and V. J. Pizzo ( 1999 ), Formation and evolution of corotating interaction regions and their three dimensional structure, Space Sci. Rev., 89, 21 – 52.
dc.identifier.citedreferenceGulisano, A. M., P. Démoulin, S. Dasso, M. E. Ruiz, and E. Marsch ( 2010 ), Global and local expansion of magnetic clouds in the inner heliosphere, Astron. Astrophys., 509, A39.
dc.identifier.citedreferenceJian, L. K., P. J. MacNeice, A. Taktakishvili, D. Odstrcil, B. Jackson, H.‐S. Yu, P. Riley, I. V. Sokolov, and R. M. Evans ( 2015 ), Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC, Space Weather, 13, 316 – 338, doi: 10.1002/2015SW001174.
dc.identifier.citedreferenceKay, C., M. Opher, and R. M. Evans ( 2013 ), Forecasting a coronal mass ejection’s altered trajectory: ForeCAT, Astrophys. J., 775, 5.
dc.identifier.citedreferenceKay, C., M. Opher, and R. M. Evans ( 2015 ), Global trends of CME deflections based on CME and solar parameters, Astrophys. J., 805, 168.
dc.identifier.citedreferenceKliem, B., T. Török, and W. T. Thompson ( 2012 ), A parametric study of erupting flux rope rotation. Modeling the “Cartwheel CME” on 9 April 2008, Sol. Phys., 281, 137 – 166.
dc.identifier.citedreferenceKubicka, M., C. Möstl, T. Rollett, L. Feng, J. P. Eastwood, and P. D. Boakes ( 2015 ), Prediction of geomagnetic storm strength from inner heliospheric in situ observations, presented at 2015 Fall Meeting, SH21B‐2408, AGU, San Francisco, Calif., 14 – 18 Dec.
dc.identifier.citedreferenceLavraud, B., et al. ( 2014 ), Geo‐effectiveness and radial dependence of magnetic cloud erosion by magnetic reconnection, J. Geophys. Res. Space Physics, 119, 26 – 35, doi: 10.1002/2013JA019154.
dc.identifier.citedreferenceLepping, R. P., L. F. Burlaga, and J. A. Jones ( 1990 ), Magnetic field structure of interplanetary magnetic clouds at 1 AU, J. Geophys. Res., 95, 11,957 – 11,965.
dc.identifier.citedreferenceLindsay, G. M., C. T. Russell, and J. G. Luhmann ( 1995 ), Coronal mass ejection and stream interaction region characteristics and their potential geomagnetic effectiveness, J. Geophys. Res., 100, 16,999 – 17,013.
dc.identifier.citedreferenceLinker, J., et al. ( 1999 ), Magnetohydrodynamic modeling of the solar corona during Whole Sun Month, J. Geophys. Res., 104, 9809 – 9830.
dc.identifier.citedreferenceLuhmann, J. G., et al. ( 2008 ), STEREO IMPACT investigation goals, measurements, and data products overview, Space Sci. Rev., 136, 117 – 184, doi: 10.1007/s11214‐007‐9170‐x.
dc.identifier.citedreferenceLugaz, N., C. Downs, K. Shibata, I. I. Roussev, A. Asai, and T. I. Gombosi ( 2011 ), Numerical investigation of a coronal mass ejection from an anemone active region: Reconnection and deflection of the 2005 August 22 eruption, Astrophys. J., 738, 127, doi: 10.1088/0004‐637X/738/2/127.
dc.identifier.citedreferenceLynch, B. J., T. H. Zurbuchen, L. A. Fisk, and S. K. Antiochos ( 2003 ), Internal structure of magnetic clouds: Plasma and composition, J. Geophys. Res., 108, 1239, doi: 10.1029/2002JA009591.
dc.identifier.citedreferenceLynch, B. J., S. K. Antiochos, Y. Li, J. G. Luhmann, and C. R. DeVore ( 2009 ), Rotation of coronal mass ejections during eruption, Astrophys. J., 697, 1918.
dc.identifier.citedreferenceManchester, W. B., IV, et al. ( 2004 ), Modeling a space weather event from the Sun to the Earth: CME generation and interplanetary propagation, J. Geophys. Res., 109, A02107.
dc.identifier.citedreferenceManchester, W. B., IV, et al. ( 2005 ), Coronal mass ejection shock and sheath structures relevant to particle acceleration, Astrophys. J., 622, 1225 – 1239.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.