Show simple item record

Templateâ based protein structure prediction in CASP11 and retrospect of Iâ TASSER in the last decade

dc.contributor.authorYang, Jianyi
dc.contributor.authorZhang, Wenxuan
dc.contributor.authorHe, Baoji
dc.contributor.authorWalker, Sara Elizabeth
dc.contributor.authorZhang, Hongjiu
dc.contributor.authorGovindarajoo, Brandon
dc.contributor.authorVirtanen, Jouko
dc.contributor.authorXue, Zhidong
dc.contributor.authorShen, Hong‐bin
dc.contributor.authorZhang, Yang
dc.date.accessioned2016-10-17T21:17:52Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationYang, Jianyi; Zhang, Wenxuan; He, Baoji; Walker, Sara Elizabeth; Zhang, Hongjiu; Govindarajoo, Brandon; Virtanen, Jouko; Xue, Zhidong; Shen, Hong‐bin ; Zhang, Yang (2016). "Templateâ based protein structure prediction in CASP11 and retrospect of Iâ TASSER in the last decade." Proteins: Structure, Function, and Bioinformatics 84: 233-246.
dc.identifier.issn0887-3585
dc.identifier.issn1097-0134
dc.identifier.urihttps://hdl.handle.net/2027.42/134137
dc.description.abstractWe report the structure prediction results of a new composite pipeline for templateâ based modeling (TBM) in the 11th CASP experiment. Starting from multiple structure templates identified by LOMETS based metaâ threading programs, the QUARK ab initio folding program is extended to generate initial fullâ length models under strong constraints from template alignments. The final atomic models are then constructed by Iâ TASSER based fragment reassembly simulations, followed by the fragmentâ guided molecular dynamic simulation and the MQAPâ based model selection. It was found that the inclusion of QUARKâ TBM simulations as an intermediate modeling step could help improve the quality of the Iâ TASSER models for both Easy and Hard TBM targets. Overall, the average TMâ score of the first Iâ TASSER model is 12% higher than that of the best LOMETS templates, with the RMSD in the same threadingâ aligned regions reduced from 5.8 to 4.7 à . Nevertheless, there are nearly 18% of TBM domains with the templates deteriorated by the structure assembly pipeline, which may be attributed to the errors of secondary structure and domain orientation predictions that propagate through and degrade the procedures of template identification and final model selections. To examine the record of progress, we made a retrospective report of the Iâ TASSER pipeline in the last five CASP experiments (CASP7â 11). The data show no clear progress of the LOMETS threading programs over PSIâ BLAST; but obvious progress on structural improvement relative to threading templates was witnessed in recent CASP experiments, which is probably attributed to the integration of the extended ab initio folding simulation with the threading assembly pipeline and the introduction of atomicâ level structure refinements following the reduced modeling simulations. Proteins 2016; 84(Suppl 1):233â 246. © 2015 Wiley Periodicals, Inc.
dc.publisherRiviera Maya
dc.publisherWiley Periodicals, Inc.
dc.subject.otherprotein structure prediction
dc.subject.otherthreading
dc.subject.otherIâ TASSER
dc.subject.otherQUARK
dc.subject.otherCASP11
dc.titleTemplateâ based protein structure prediction in CASP11 and retrospect of Iâ TASSER in the last decade
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134137/1/prot24918.pdf
dc.identifier.doi10.1002/prot.24918
dc.identifier.sourceProteins: Structure, Function, and Bioinformatics
dc.identifier.citedreferenceZhang Y. ITASSER server for protein 3D structure prediction. BMC Bioinformatics 2008; 9: 40
dc.identifier.citedreferenceRoy A, Kucukural A, Zhang Y. ITASSER: a unified platform for automated protein structure and function prediction. Nat Protoc 2010; 5: 725 â 738.
dc.identifier.citedreferenceXu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments and optimized knowledgeâ based force field. Proteins 2012; 80: 1715 â 1735.
dc.identifier.citedreferenceKryshtafovych A, Fidelis K, Moult J. CASP10 results compared to those of previous CASP experiments. Proteins 2014; 82 Suppl 2: 164 â 174.
dc.identifier.citedreferenceKryshtafovych A, Venclovas C, Fidelis K, Moult J. Progress over the first decade of CASP experiments. Proteins 2005; 61 Suppl 7: 225 â 236.
dc.identifier.citedreferenceXue Z, Xu D, Wang Y, Zhang Y. ThreaDom: extracting protein domain boundary information from multiple threading alignments. Bioinformatics 2013; 29: i247 â i256.
dc.identifier.citedreferenceOrengo CA, Michie AD, Jones S, Jones DT, Swindells MB, Thornton JM. CATHâ a hierarchic classification of protein domain structures. Structure 1997; 5: 1093 â 1108.
dc.identifier.citedreferenceZhang Y. Interplay of Iâ TASSER and QUARK for templateâ based and ab initio protein structure prediction in CASP10. Proteins 2014; 82 Suppl 2: 175 â 187.
dc.identifier.citedreferenceWu S, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 2007; 5: 17
dc.identifier.citedreferenceZhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: a new approach to ab initio protein structure prediction. Biophys J 2003; 85: 1145 â 1164.
dc.identifier.citedreferenceXu D, Zhang Y. Toward optimal fragment generations for ab initio protein structure assembly. Proteins 2013; 81: 229 â 239.
dc.identifier.citedreferenceZhang Y, Skolnick J. SPICKER: a clustering approach to identify nearâ native protein folds. J Comput Chem 2004; 25: 865 â 871.
dc.identifier.citedreferenceZhang J, Liang Y, Zhang Y. Atomicâ level protein structure refinement using fragmentâ guided molecular dynamics conformation sampling. Structure 2011; 19: 1784 â 1795.
dc.identifier.citedreferenceZhang Y, Skolnick J. Scoring function for automated assessment of protein structure template quality. Proteins 2004; 57: 702 â 710.
dc.identifier.citedreferenceShen MY, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci 2006; 15: 2507 â 2524.
dc.identifier.citedreferenceZhou H, Skolnick J. GOAP: a generalized orientationâ dependent, allâ atom statistical potential for protein structure prediction. Biophys J 2011; 101: 2043 â 2052.
dc.identifier.citedreferenceZhang J, Zhang Y. A novel sideâ chain orientation dependent potential derived from randomâ walk reference state for protein fold selection and structure prediction. PloS One 2010; 5: e15386
dc.identifier.citedreferenceLi Y, Zhang Y. REMO: A new protocol to refine full atomic protein models from Câ alpha traces by optimizing hydrogenâ bonding networks. Proteins 2009; 76: 665 â 676.
dc.identifier.citedreferenceKrivov GG, Shapovalov MV, Dunbrack RL. Jr. Improved prediction of protein sideâ chain conformations with SCWRL4. Proteins 2009; 77: 778 â 795.
dc.identifier.citedreferenceZhang Y, Skolnick J. TMâ align: a protein structure alignment algorithm based on the TMâ score. Nucleic Acids Res 2005; 33: 2302 â 2309.
dc.identifier.citedreferenceXu J, Zhang Y. How significant is a protein structure similarity with TMâ scoreâ =â 0.5? Bioinformatics 2010; 26: 889 â 895.
dc.identifier.citedreferenceKeedy DA, Williams CJ, Headd JJ, Arendall WB, 3rd, Chen VB, Kapral GJ, Gillespie RA, Block JN, Zemla A, Richardson DC, Richardson JS. The other 90% of the protein: assessment beyond the Calphas for CASP8 templateâ based and highâ accuracy models. Proteins 2009; 77 Suppl 9: 29 â 49.
dc.identifier.citedreferenceChen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. MolProbity: allâ atom structure validation for macromolecular crystallography. Acta Crystallogr D 2010; 66(Pt 1): 12 â 21.
dc.identifier.citedreferenceJones DT. Protein secondary structure prediction based on positionâ specific scoring matrices. J Mol Biol 1999; 292: 195 â 202.
dc.identifier.citedreferenceRocha J, Popescu AO, Borges P, Milâ Homens D, Moreira LM, Saâ Correia I, Fialho AM, Frazao C. Structure of Burkholderia cepacia UDPâ glucose dehydrogenase (UGD) BceC and role of Tyr10 in final hydrolysis of UGD thioester intermediate. J Bacteriol 2011; 193: 3978 â 3987.
dc.identifier.citedreferenceZhang Y. ITASSER: Fully automated protein structure prediction in CASP8. Proteins 2009; 77: 100 â 113.
dc.identifier.citedreferenceXu D, Zhang J, Roy A, Zhang Y. Automated protein structure modeling in CASP9 by Iâ TASSER pipeline combined with QUARKâ based ab initio folding and FGâ MDâ based structure refinement. Proteins 2011; 79 ( Suppl 10 ): 147 â 160.
dc.identifier.citedreferenceYan R, Xu D, Yang J, Walker S, Zhang Y. A comparative assessment and analysis of 20 representative sequence alignment methods for protein structure prediction. Sci Rep 2013; 3: 2619
dc.identifier.citedreferenceGrishin NV. CASP11 and CASP ROLL Domain Definition and Classification. Riviera Maya, Mexico; 2014.
dc.identifier.citedreferenceBrowne WJ, North AC, Phillips DC, Brew K, Vanaman TC, Hill RL. A possible threeâ dimensional structure of bovine alphaâ lactalbumin based on that of hen’s eggâ white lysozyme. J Mol Biol 1969; 42: 65 â 86.
dc.identifier.citedreferenceAltschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSIâ BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389 â 3402.
dc.identifier.citedreferenceBowie JU, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a known threeâ dimensional structure. Science 1991; 253: 164 â 170.
dc.identifier.citedreferenceSoding J. Protein homology detection by HMMâ HMM comparison. Bioinformatics 2005; 21: 951 â 960.
dc.identifier.citedreferenceWu S, Zhang Y. MUSTER: Improving protein sequence profileâ profile alignments by using multiple sources of structure information. Proteins 2008; 72: 547 â 556.
dc.identifier.citedreferenceGinalski K, Elofsson A, Fischer D, Rychlewski L. 3Dâ Jury: a simple approach to improve protein structure predictions. Bioinformatics 2003; 19: 1015 â 1018.
dc.identifier.citedreferenceWu S, Zhang Y. LOMETS: a local metaâ threadingâ server for protein structure prediction. Nucl Acids Res 2007; 35: 3375 â 3382.
dc.identifier.citedreferenceZhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci USA 2004; 101: 7594 â 7599.
dc.identifier.citedreferenceYang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The Iâ TASSER Suite: protein structure and function prediction. Nature Methods 2015; 12: 7 â 8.
dc.identifier.citedreferenceJoo K, Lee J, Sim S, Lee SY, Lee K, Heo S, Lee IH, Lee SJ, Lee J. Protein structure modeling for CASP10 by multiple layers of global optimization. Proteins 2014; 82 Suppl 2: 188 â 195.
dc.identifier.citedreferenceCheng J, Wang Z, Tegge AN, Eickholt J. Prediction of global and local quality of CASP8 models by MULTICOM series. Proteins 2009; 77 Suppl 9: 181 â 184.
dc.identifier.citedreferenceMisura KM, Chivian D, Rohl CA, Kim DE, Baker D. Physically realistic homology models built with ROSETTA can be more accurate than their templates. Proc Natl Acad Sci USA 2006; 103: 5361 â 5366.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.