Show simple item record

Untargeted, spectral libraryâ free analysis of dataâ independent acquisition proteomics data generated using Orbitrap mass spectrometers

dc.contributor.authorTsou, Chih‐chiang
dc.contributor.authorTsai, Chia‐feng
dc.contributor.authorTeo, Guo Ci
dc.contributor.authorChen, Yu‐ju
dc.contributor.authorNesvizhskii, Alexey I.
dc.date.accessioned2016-10-17T21:17:54Z
dc.date.available2017-10-05T14:33:49Zen
dc.date.issued2016-08
dc.identifier.citationTsou, Chih‐chiang ; Tsai, Chia‐feng ; Teo, Guo Ci; Chen, Yu‐ju ; Nesvizhskii, Alexey I. (2016). "Untargeted, spectral libraryâ free analysis of dataâ independent acquisition proteomics data generated using Orbitrap mass spectrometers." PROTEOMICS 16(15-16): 2257-2271.
dc.identifier.issn1615-9853
dc.identifier.issn1615-9861
dc.identifier.urihttps://hdl.handle.net/2027.42/134139
dc.publisherChapman & Hall/CRC
dc.publisherWiley Periodicals, Inc.
dc.subject.otherBioinformatics
dc.subject.otherDataâ independent acquisition
dc.titleUntargeted, spectral libraryâ free analysis of dataâ independent acquisition proteomics data generated using Orbitrap mass spectrometers
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelMaterials Science and Engineering
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelChemical Engineering
dc.subject.hlbtoplevelScience
dc.subject.hlbtoplevelEngineering
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134139/1/pmic12370_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134139/2/pmic12370.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134139/3/pmic12370-sup-0001-SupplementaryInfo.pdf
dc.identifier.doi10.1002/pmic.201500526
dc.identifier.sourcePROTEOMICS
dc.identifier.citedreferenceLiu, Y., Chen, J., Sethi, A., Li, Q. K. et al., Glycoproteomic analysis of prostate cancer tissues by SWATH mass spectrometry discovers Nâ acylethanolamine acid amidase and protein tyrosine kinase 7 as signatures for tumor aggressiveness. Mol. Cell. Proteomics 2014, 13, 1753 â 1768.
dc.identifier.citedreferenceGuo, T., Kouvonen, P., Koh, C. C., Gillet, L. C. et al., Rapid mass spectrometric conversion of tissue biopsy samples into permanent quantitative digital proteome maps. Nat. Med. 2015, 21, 407 â 413.
dc.identifier.citedreferenceCaron, E., Espona, L., Kowalewski, D. J., Schuster, H. et al., An openâ source computational and data resource to analyze digital maps of immunopeptidomes. eLife 2015, 4, e07661.
dc.identifier.citedreferenceLiu, Y., Buil, A., Collins, B. C., Gillet, L. C. et al., Quantitative variability of 342 plasma proteins in a human twin population. Mol. Syst. Biol. 2015, 11, 786.
dc.identifier.citedreferenceTsou, C. C., Avtonomov, D., Larsen, B., Tucholska, M. et al., DIAâ Umpire: comprehensive computational framework for dataâ independent acquisition proteomics. Nat. Methods 2015, 12, 258 â 264.
dc.identifier.citedreferenceCraig, R., Beavis, R. C., TANDEM: matching proteins with tandem mass spectra. Bioinformatics 2004, 20, 1466 â 1467.
dc.identifier.citedreferenceEng, J. K., Jahan, T. A., Hoopmann, M. R., Comet: an openâ source MS/MS sequence database search tool. Proteomics 2013, 13, 22 â 24.
dc.identifier.citedreferenceKim, S., Pevzner, P. A., MSâ GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 2014, 5, 5277.
dc.identifier.citedreferenceKeller, A., Nesvizhskii, A. I., Kolker, E., Aebersold, R., Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal. Chem. 2002, 74, 5383 â 5392.
dc.identifier.citedreferenceKall, L., Canterbury, J. D., Weston, J., Noble, W. S., MacCoss, M. J., Semiâ supervised learning for peptide identification from shotgun proteomics datasets. Nat. Methods 2007, 4, 923 â 925.
dc.identifier.citedreferenceVaudel, M., Burkhart, J. M., Zahedi, R. P., Oveland, E. et al., PeptideShaker enables reanalysis of MSâ derived proteomics data sets. Nat. Biotechnol. 2015, 33, 22 â 24.
dc.identifier.citedreferenceNesvizhskii, A. I., Keller, A., Kolker, E., Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Anal. Chem. 2003, 75, 4646 â 4658.
dc.identifier.citedreferenceLam, H., Deutsch, E. W., Eddes, J. S., Eng, J. K. et al., Development and validation of a spectral library searching method for peptide identification from MS/MS. Proteomics 2007, 7, 655 â 667.
dc.identifier.citedreferenceEgertson, J. D., Kuehn, A., Merrihew, G. E., Bateman, N. W. et al., Multiplexed MS/MS for improved dataâ independent acquisition. Nat. Methods 2013, 10, 744 â 746.
dc.identifier.citedreferencePrakash, A., Peterman, S., Ahmad, S., Sarracino, D. et al., Hybrid data acquisition and processing strategies with increased throughput and selectivity: pSMART analysis for global qualitative and quantitative analysis. J. Proteome Res. 2014, 13, 5415 â 5430.
dc.identifier.citedreferenceHolman, J. D., Tabb, D. L., Mallick, P., Employing ProteoWizard to convert raw mass spectrometry data. Curr. prot. bioinfor., 2014, 46, 13.24.11 â 13.24.19.
dc.identifier.citedreferenceKirchner, M., Timm, W., Fong, P., Wangemann, P., Steen, H., Nonâ linear classification for onâ theâ fly fractional mass filtering and targeted precursor fragmentation in mass spectrometry experiments. Bioinformatics 2010. 26, 791 â 797.
dc.identifier.citedreferenceTiller, P. R., Yu, S., Bateman, K. P., Castroâ Perez, J. et al., Fractional mass filtering as a means to assess circulating metabolites in early human clinical studies. Rapid Commun. Mass Spectrom. 2008, 22, 3510 â 3516.
dc.identifier.citedreferenceToumi, M. L., Desaire, H., Improving mass defect filters for human proteins. J. Proteome Res. 2010, 9, 5492 â 5495.
dc.identifier.citedreferenceShteynberg, D., Deutsch, E. W., Lam, H., Eng, J. K. et al., iProphet: multiâ level integrative analysis of shotgun proteomic data improves peptide and protein identification rates and error estimates. Mol. Cell. Proteomics 2011, 10, M111 007690.
dc.identifier.citedreferenceNesvizhskii, A. I., A survey of computational methods and error rate estimation procedures for peptide and protein identification in shotgun proteomics. J. Proteomics 2010, 73, 2092 â 2123.
dc.identifier.citedreferenceToprak, U. H., Gillet, L. C., Maiolica, A., Navarro, P. et al., Conserved peptide fragmentation as a benchmarking tool for mass spectrometers and a discriminating feature for targeted proteomics. Mol. Cell. Proteomics 2014, 13, 2056 â 2071.
dc.identifier.citedreferenceRobin, S., Barâ Hen, A., Daudin, J. J., Pierre, L., A semiâ parametric approach for mixture models: Application to local false discovery rate estimation. Comput. Stat. Data Anal. 2007, 51, 5483 â 5493.
dc.identifier.citedreferenceChoi, H., Ghosh, D., Nesvizhskii, A. I., Statistical validation of peptide identifications in largeâ scale proteomics using the targetâ decoy database search strategy and flexible mixture modeling. J. Proteome Res. 2008, 7, 286 â 292.
dc.identifier.citedreferenceSilverman, B. W., Density estimation for statistics and data analysis. Monographs on statistics and applied probability1998, Boca Raton, Chapman & Hall/CRC. ix, 175 p.
dc.identifier.citedreferenceTeo, G., Kim, S., Tsou, C.â C., Collins, B. et al., mapDIA: preprocessing and statistical analysis of quantitative proteomics data from data independent acquisition mass spectrometry. J. Proteomics 2015, 129, 108 â 120.
dc.identifier.citedreferenceVenable, J. D., Dong, M. Q., Wohlschlegel, J., Dillin, A., Yates, J. R., Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat. Methods 2004, 1, 39 â 45.
dc.identifier.citedreferencePanchaud, A., Scherl, A., Shaffer, S. A., von Haller, P. D. et al., Precursor acquisition independent from ion count: how to dive deeper into the proteomics ocean. Anal. Chem. 2009, 81, 6481 â 6488.
dc.identifier.citedreferenceGillet, L. C., Navarro, P., Tate, S., Rost, H. et al., Targeted data extraction of the MS/MS spectra generated by dataâ independent acquisition: a new concept for consistent and accurate proteome analysis. Mol. Cell. Proteomics 2012, 11, O111 016717.
dc.identifier.citedreferenceSilva, J. C., Gorenstein, M. V., Li, G. Z., Vissers, J. P., Geromanos, S. J., Absolute quantification of proteins by LCMSE: a virtue of parallel MS acquisition. Mol. Cell. Proteomics 2006, 5, 144 â 156.
dc.identifier.citedreferenceBilbao, A., Varesio, E., Luban, J., Strambioâ Deâ Castillia, C. et al., Processing strategies and software solutions for dataâ independent acquisition in mass spectrometry. Proteomics 2015, 15, 964 â 980.
dc.identifier.citedreferenceRost, H. L., Rosenberger, G., Navarro, P., Gillet, L. et al., OpenSWATH enables automated, targeted analysis of dataâ independent acquisition MS data. Nat. Biotechnol. 2014, 32, 219 â 223.
dc.identifier.citedreferenceBruderer, R., Bernhardt, O. M., Gandhi, T., Miladinovic, S. M. et al., Extending the limits of quantitative proteome profiling with dataâ independent acquisition and application to acetaminophenâ treated threeâ dimensional liver microtissues. Mol. Cell. Proteomics 2015, 14, 1400 â 1410.
dc.identifier.citedreferenceMacLean, B., Tomazela, D. M., Shulman, N., Chambers, M. et al., Skyline: an open source document editor for creating and analyzing targeted proteomics experiments. Bioinformatics 2010, 26, 966 â 968.
dc.identifier.citedreferenceReiter, L., Rinner, O., Picotti, P., Huttenhain, R. et al., mProphet: automated data processing and statistical validation for largeâ scale SRM experiments. Nat. Methods 2011, 8, 430 â 435.
dc.identifier.citedreferenceSelevsek, N., Chang, C. Y., Gillet, L. C., Navarro, P. et al., Reproducible and consistent quantification of the Saccharomyces cerevisiae proteome by SWATHâ mass spectrometry. Mol. Cell. Proteomics 2015, 14, 739 â 749.
dc.identifier.citedreferenceChang, R. Y., Etheridge, N., Nouwens, A. S., Dodd, P. R., SWATH analysis of the synaptic proteome in Alzheimer’s disease. Neurochem. Int. 2015, 87, 1 â 12.
dc.identifier.citedreferenceSidoli, S., Lin, S., Xiong, L., Bhanu, N. V. et al., SWATH analysis for characterization and quantification of histone postâ translational modifications. Mol. Cell. Proteomics 2015.
dc.identifier.citedreferenceRosenberger, G., Koh, C. C., Guo, T., Rost, H. L. et al., A repository of assays to quantify 10,000 human proteins by SWATHâ MS. Sci. Data 2014, 1, 140031.
dc.identifier.citedreferenceCollins, B. C., Gillet, L. C., Rosenberger, G., Rost, H. L. et al., Quantifying protein interaction dynamics by SWATH mass spectrometry: application to the 14â 3â 3 system. Nat. Methods 2013, 10, 1246 â 1253.
dc.identifier.citedreferenceLambert, J. P., Ivosev, G., Couzens, A. L., Larsen, B. et al., Mapping differential interactomes by affinity purification coupled with dataâ independent mass spectrometry acquisition. Nat. Methods 2013, 10, 1239 â 1245.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.