Show simple item record

The impact of an ICME on the Jovian Xâ ray aurora

dc.contributor.authorDunn, William R.
dc.contributor.authorBranduardi‐raymont, Graziella
dc.contributor.authorElsner, Ronald F.
dc.contributor.authorVogt, Marissa F.
dc.contributor.authorLamy, Laurent
dc.contributor.authorFord, Peter G.
dc.contributor.authorCoates, Andrew J.
dc.contributor.authorGladstone, G. Randall
dc.contributor.authorJackman, Caitriona M.
dc.contributor.authorNichols, Jonathan D.
dc.contributor.authorRae, I. Jonathan
dc.contributor.authorVarsani, Ali
dc.contributor.authorKimura, Tomoki
dc.contributor.authorHansen, Kenneth C.
dc.contributor.authorJasinski, Jamie M.
dc.date.accessioned2016-10-17T21:18:04Z
dc.date.available2017-05-02T15:09:13Zen
dc.date.issued2016-03
dc.identifier.citationDunn, William R.; Branduardi‐raymont, Graziella ; Elsner, Ronald F.; Vogt, Marissa F.; Lamy, Laurent; Ford, Peter G.; Coates, Andrew J.; Gladstone, G. Randall; Jackman, Caitriona M.; Nichols, Jonathan D.; Rae, I. Jonathan; Varsani, Ali; Kimura, Tomoki; Hansen, Kenneth C.; Jasinski, Jamie M. (2016). "The impact of an ICME on the Jovian Xâ ray aurora." Journal of Geophysical Research: Space Physics 121(3): 2274-2307.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134147
dc.description.abstractWe report the first Jupiter Xâ ray observations planned to coincide with an interplanetary coronal mass ejection (ICME). At the predicted ICME arrival time, we observed a factor of â ¼8 enhancement in Jupiter’s Xâ ray aurora. Within 1.5 h of this enhancement, intense bursts of nonâ Io decametric radio emission occurred. Spatial, spectral, and temporal characteristics also varied between ICME arrival and another Xâ ray observation two days later. Gladstone et al. (2002) discovered the polar Xâ ray hot spot and found it pulsed with 45 min quasiperiodicity. During the ICME arrival, the hot spot expanded and exhibited two periods: 26 min periodicity from sulfur ions and 12 min periodicity from a mixture of carbon/sulfur and oxygen ions. After the ICME, the dominant period became 42 min. By comparing Vogt et al. (2011) Jovian mapping models with spectral analysis, we found that during ICME arrival at least two distinct ion populations, from Jupiter’s dayside, produced the Xâ ray aurora. Auroras mapping to magnetospheric field lines between 50 and 70 RJ were dominated by emission from precipitating sulfur ions (S7+,â ¦,14+). Emissions mapping to closed field lines between 70 and 120 RJ and to open field lines were generated by a mixture of precipitating oxygen (O7+,8+) and sulfur/carbon ions, possibly implying some solar wind precipitation. We suggest that the best explanation for the Xâ ray hot spot is pulsed dayside reconnection perturbing magnetospheric downward currents, as proposed by Bunce et al. (2004). The auroral enhancement has different spectral, spatial, and temporal characteristics to the hot spot. By analyzing these characteristics and coincident radio emissions, we propose that the enhancement is driven directly by the ICME through Jovian magnetosphere compression and/or a largeâ scale dayside reconnection event.Key PointsThe arrival of an ICME changes Jupiter’s Xâ ray auroral spectra, spatial, and temporal characteristicsJupiter’s Xâ ray aurora maps to sources in the outer magnetosphere and also to open field linesJupiter’s Xâ ray aurora is produced by two distinct ion populations during the ICME
dc.publisherWiley Periodicals, Inc.
dc.publisherp. 17, Astron. Soc. Pac
dc.subject.otherJovian
dc.subject.otherJupiter
dc.subject.otherXâ ray
dc.subject.otherAurora
dc.subject.otherCME
dc.subject.otherPeriodicity
dc.titleThe impact of an ICME on the Jovian Xâ ray aurora
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134147/1/jgra52419.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134147/2/jgra52419-sup-0001-supplementary.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134147/3/jgra52419_am.pdf
dc.identifier.doi10.1002/2015JA021888
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceMaurellis, A. N., T. E. Cravens, G. R. Gladstone, J. H. Waite, and L. W. Acton ( 2000 ), Jovian Xâ ray emission from solar Xâ ray scattering, Geophys. Res. Lett., 27 ( 9 ), 1339 â 1342.
dc.identifier.citedreferenceMarhavilas, P. K., G. C. Anagnostopoulos, and E. T. Sarris ( 2001 ), Periodic signals in Ulysses? Energetic particle events upstream and downstream from the 4n bow shock, Planet. Space Sci., 49 ( 10 ), 1031 â 1047.
dc.identifier.citedreferenceMasters, A. ( 2015 ), The dayside reconnection voltage applied to Saturn’s magnetosphere, Geophys. Res. Lett., 42 ( 8 ), 2577 â 2585, doi: 10.1002/2015GL063361.
dc.identifier.citedreferenceMasters, A., et al. ( 2010 ), Cassini observations of a Kelvinâ Helmholtz vortex in Saturn’s outer magnetosphere, J. Geophys. Res., 115, A07225, doi: 10.1029/2010JA015351.
dc.identifier.citedreferenceMauk, B. H., et al. ( 2009 ), Fundamental plasma processes in Saturn’s magnetosphere, in Saturn From Cassiniâ Huygens, edited by M. K.   Dougherty, L. W.   Esposito, and S. M.   Krimigis, pp. 281 â 331, Springer, New York.
dc.identifier.citedreferenceMcComas, D. J., and F. Bagenal ( 2007 ), Jupiter: A fundamentally different magnetospheric interaction with the solar wind, Geophys. Res. Lett., 34, L20106, doi: 10.1029/2007GL031078.
dc.identifier.citedreferenceMcComas, D. J., and F. Bagenal ( 2008 ), Reply to comment by S. W. H. Cowley et al. on â Jupiter: A fundamentally different magnetospheric interaction with the solar windâ , Geophys. Res. Lett., 35, L10103, doi: 10.1029/2008GL034351.
dc.identifier.citedreferenceMetzger, A. E., D. A. Gilman, J. L. Luthey, K. C. Hurley, H. W. Schnopper, F. D. Seward, and J. D. Sullivan ( 1983 ), The detection of Xâ rays from Jupiter, J. Geophys. Res., 88 ( A10 ), 7731 â 7741.
dc.identifier.citedreferenceMiura, A. ( 1984 ), Anomalous transport by magnetohydrodynamic Kelvinâ Helmholtz instabilities in the solar windâ magnetosphere interaction, 89, 801 â 818.
dc.identifier.citedreferenceNichols, J. D. ( 2011 ), Magnetosphereâ ionosphere coupling in Jupiter’s middle magnetosphere: Computations including a selfâ consistent current sheet magnetic field model, J. Geophys. Res., 116, A10232, doi: 10.1029/2011JA016922.
dc.identifier.citedreferenceNichols, J. D., and S. W. H. Cowley ( 2004 ), Magnetosphereâ ionosphere coupling currents in Jupiter’s middle magnetosphere: Effect of precipitationâ induced enhancement of the ionospheric Pedersen conductivity, Ann. Geophys., 22, 1799 â 1827.
dc.identifier.citedreferenceNichols, J. D., E. J. Bunce, J. T. Clarke, S. W. H. Cowley, J.â C. Gérard, D. Grodent, and W. R. Pryor ( 2007 ), Response of Jupiter’s UV auroras to interplanetary conditions as observed by the Hubble Space Telescope during the Cassini flyby campaign, J. Geophys. Res., 112, A02203, doi: 10.1029/2006JA012005.
dc.identifier.citedreferenceNichols, J. D., J. T. Clarke, J.â C. Gérard, D. Grodent, and K. C. Hansen ( 2009 ), Variation of different components of Jupiter’s auroral emission, J. Geophys. Res., 114, A06210, doi: 10.1029/2009JA014051.
dc.identifier.citedreferenceNykyri, K., and A. Otto ( 2001 ), Plasma transport at the magnetospheric boundary due to reconnection in Kelvinâ Helmholtz vortices, Geophys. Res. Lett, 28 ( 18 ), 3565 â 3568.
dc.identifier.citedreferenceNykyri, K., A. Otto, B. Lavraud, C. Mouikis, L. M. Kistler, A. Balogh, and H. Reme ( 2006 ), Cluster observations of reconnection due to the Kelvinâ Helmholtz instability at the dawnside magnetospheric flank, Ann. Geophys., 24, 2619 â 2643.
dc.identifier.citedreferenceOzak, N., T. E. Cravens, and D. R. Schultz ( 2013 ), Auroral ion precipitation at Jupiter: Predictions for Juno, Geophys. Res. Lett., 40 ( 16 ), 4144 â 4148.
dc.identifier.citedreferenceOzak, N., D. R. Schultz, T. E. Cravens, V. Kharchenko, and Y.â W. Hui ( 2010 ), Auroral Xâ ray emission at Jupiter: Depth effects, J. Geophys. Res., 115, A11306, doi: 10.1029/2010JA015635.
dc.identifier.citedreferencePallier, L., and R. Prangé ( 2001 ), More about the structure of the high latitude Jovian aurorae, Planet. Space Sci., 49 ( 10 ), 1159 â 1173.
dc.identifier.citedreferencePrangé, R., P. Zarka, G. E. Ballester, T. A. Livengood, L. Denis, T. Carr, F. Reyes, S. J. Bame, and H. W. Moos ( 1993 ), Correlated variations of UV and radio emissions during an outstanding Jovian auroral event, J. Geophys. Res., 98 ( E10 ), 18,779 â 18,791.
dc.identifier.citedreferencePrangé, R., L. Pallier, K. C. Hansen, R. Howard, A. Vourlidas, R. Courtin, and C. Parkinson ( 2004 ), An interplanetary shock traced by planetary auroral storms from the Sun to Saturn, Nature, 432 ( 7013 ), 78 â 81.
dc.identifier.citedreferencePrikryl, P., R. A. Greenwald, G. J. Sofko, J. P. Villain, C. W. S. Ziesolleck, and E. Friisâ Christensen ( 1998 ), Solarâ windâ driven pulsed magnetic reconnection at the dayside magnetopause, Pc5 compressional oscillations, and field line resonances, J. Geophys. Res., 103 ( A8 ), 17,307 â 17,322.
dc.identifier.citedreferencePryor, W. R., et al. ( 2005 ), Cassini UVIS observations of Jupiter’s auroral variability, Icarus, 178 ( 2 ), 312 â 326.
dc.identifier.citedreferenceRobbrecht, E., D. Berghmans, and R. A. M. Van der Linden ( 2009a ), Automated LASCO CME catalog for solar cycle 23: Are CMES scale invariant?, Astrophys. J., 691 ( 2 ), 1222.
dc.identifier.citedreferenceRobbrecht, E., S. Patsourakos, and A. Vourlidas ( 2009b ), No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures, Astrophys. J., 701 ( 1 ), 283.
dc.identifier.citedreferenceTaylor, M. G. G. T., H. Hasegawa, B. Lavraud, T. Phan, C. P. Escoubet, M. W. Dunlop, and Y. V. Bogdanova ( 2012 ), Spatial distribution of rolled up Kelvinâ Helmholtz vortices at Earth’s dayside and flank magnetopause, Ann. Geophys., 30, 1025 â 1035.
dc.identifier.citedreferenceThomsen, M. F., D. B. Reisenfeld, D. M. Delapp, R. L. Tokar, D. T. Young, F. J. Crary, E. C. Sittler, M. A. McGraw, and J. D. Williams ( 2010 ), Survey of ion plasma parameters in Saturn’s magnetosphere, J. Geophys. Res., 115, A10220, doi: 10.1029/2010JA015267.
dc.identifier.citedreferenceTrafton, L. M., V. Dols, J.â C. Gérard, J. H. Waite Jr., G. R. Gladstone, and Guy Munhoven ( 1998 ), HST spectra of the Jovian ultraviolet aurora: Search for heavy ion precipitation, Astrophys. J., 507 ( 2 ), 955.
dc.identifier.citedreferenceVogt, M. F., M. G. Kivelson, K. K. Khurana, R. J. Walker, B. Bonfond, D. Grodent, and A. Radioti ( 2011 ), Improved mapping of Jupiter’s auroral features to magnetospheric sources, J. Geophys. Res., 116, A03220, doi: 10.1029/2010JA016148.
dc.identifier.citedreferenceVogt, M. F., E. J. Bunce, M. G. Kivelson, K. K. Khurana, R. J. Walker, A. Radioti, B. Bonfond, and D. Grodent ( 2015 ), Magnetosphereâ ionosphere mapping at Jupiter: Quantifying the effects of using different internal field models, J. Geophys. Res. Space Physics, 120, 2584 â 2599, doi: 10.1002/2014JA020729.
dc.identifier.citedreferenceWaite, J. H., F. Bagenal, F. Seward, C. Na, G. R. Gladstone, T. E. Cravens, K. C. Hurley, J. T. Clarke, R. Elsner, and S. A. Stern ( 1994 ), ROSAT observations of the Jupiter aurora, J. Geophys. Res., 99 ( A8 ), 14,799 â 14,809.
dc.identifier.citedreferenceWaite, J. H., Jr., et al. ( 2001 ), An auroral flare at Jupiter, Nature, 410 ( 6830 ), 787 â 789.
dc.identifier.citedreferenceWilson, R. J., P. A. Delamere, F. Bagenal, and A. Masters ( 2012 ), Kelvinâ Helmholtz instability at Saturn’s magnetopause: Cassini ion data analysis, J. Geophys. Res., 117, A03212, doi: 10.1029/2011JA016723.
dc.identifier.citedreferenceWilson, R. J., and M. K. Dougherty ( 2000 ), Evidence provided by Galileo of ultra low frequency waves within Jupiter’s middle magnetosphere, Geophys. Res. Lett., 27 ( 6 ), 835 â 838.
dc.identifier.citedreferenceZarka, P. ( 1998 ), Auroral radio emissions at the outer planets: Observations and theories, J. Geophys. Res., 103 ( E9 ), 20,159 â 20,194.
dc.identifier.citedreferenceZieger, B., and K. C. Hansen ( 2008 ), Statistical validation of a solar wind propagation model from 1 to 10 AU, J. Geophys, Res, 113, A08107, doi: 10.1029/2008JA013046.
dc.identifier.citedreferenceAnagnostopoulos, G. C., A. Balogh, P. K. Marhavilas, A. G. Rigas, E. T. Sarris, and P. C. Trochoutsos ( 1998 ), Quasiâ periodic behavior of ion events and wave activity upstream from Jupiter’s bow shock: Ulysses’ observations, Geophys. Res. Lett., 25 ( 9 ), 1533 â 1536.
dc.identifier.citedreferenceAnagnostopoulos, G. C., I. Karanikola, and P. Marhavilas ( 2001 ), Largeâ scale energetic particle layers in the high latitude Jovian magnetosphere, Planet. Space Sci., 49 ( 10 ), 1049 â 1065.
dc.identifier.citedreferenceArnaud, K. A. ( 1996 ), XSPEC: The first ten years, in Astronomical Data Analysis Software and Systems V, vol. 101, edited by G. H.   Jacoby and J.   Barnes, p. 17, Astron. Soc. Pac., San Francisco, Calif.
dc.identifier.citedreferenceBaron, R. L., T. Owen, J. E. P. Connerney, T. Satoh, and J. Harrington ( 1996 ), Solar wind control of Jupiter’s H+ 3 auroras, Icarus, 120 ( 2 ), 437 â 442.
dc.identifier.citedreferenceBarrow, C. H., F. Genova, and M. D. Desch ( 1986 ), Solar wind control of Jupiter’s decametric radio emission, Astron. Astrophys., 165, 244 â 250.
dc.identifier.citedreferenceBhardwaj, A., G. Branduardiâ Raymont, R. F. Elsner, G. R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J. H. Waite, and T. E. Cravens ( 2005 ), Solar control on Jupiter’s equatorial Xâ ray emissions: 26â 29 November 2003 XMMâ Newton observation, Geophys. Res. Lett., 32, L03S08, doi: 10.1029/2004GL021497.
dc.identifier.citedreferenceBhardwaj, A., R. F. Elsner, G. R. Gladstone, J. H. Waite Jr., G. Branduardiâ Raymont, T. E. Cravens, and P. G. Ford ( 2006 ), Lowâ to middleâ latitude Xâ ray emission from Jupiter, J. Geophys. Res., 111, A11225, doi: 10.1029/2006JA011792.
dc.identifier.citedreferenceBiémont, E., Y. Frémat, and P. Quinet ( 1999 ), Ionization potentials of atoms and ions from lithium to tin ( z  = 50), At. Data Nucl. Data Tables, 71 ( 1 ), 117 â 146.
dc.identifier.citedreferenceBonfond, B., M. F. Vogt, J.â C. Gérard, D. Grodent, A. Radioti, and V. Coumans ( 2011 ), Quasiâ periodic polar flares at Jupiter: A signature of pulsed dayside reconnections?, Geophys. Res. Lett., 38, L02104, doi: 10.1029/2010GL045981.
dc.identifier.citedreferenceBranduardiâ Raymont, G., R. F. Elsner, G. R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, and J. H. Waite Jr. ( 2004 ), First observation of Jupiter by XMMâ Newton, Astron. Astrophys., 424 ( 1 ), 331 â 337.
dc.identifier.citedreferenceBranduardiâ Raymont, G., A. Bhardwaj, R. F. Elsner, G. R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J. H. Waite, and T. E. Cravens ( 2007a ), Latest results on Jovian disk Xâ rays from XMMâ Newton, Planet. Space Sci., 55 ( 9 ), 1126 â 1134.
dc.identifier.citedreferenceBranduardiâ Raymont, G., A. Bhardwaj, R. F. Elsner, G. R. Gladstone, G. Ramsay, P. Rodriguez, R. Soria, J. H. Waite, and T. E. Cravens ( 2007b ), A study of Jupiter’s aurorae with XMMâ Newton, Astron. Astrophys., 463 ( 2 ), 761 â 774.
dc.identifier.citedreferenceBranduardiâ Raymont, G., R. F. Elsner, M. Galand, D. Grodent, T. E. Cravens, P. Ford, G. R. Gladstone, and J. H. Waite ( 2008 ), Spectral morphology of the Xâ ray emission from Jupiter’s aurorae, J. Geophys. Res., 113, A02202, doi: 10.1029/2007JA012600.
dc.identifier.citedreferenceBunce, E. J., S. W. H. Cowley, and T. K. Yeoman ( 2004 ), Jovian cusp processes: Implications for the polar aurora, J. Geophys. Res., 109, A09S13, doi: 10.1029/2003JA010280.
dc.identifier.citedreferenceChandrasekhar, S. ( 1961 ), Hydrodynamic and Hydrodynamic Stability, OUP, Oxford, U. K.
dc.identifier.citedreferenceChen, S.â H., and M. G. Kivelson ( 1993 ), On nonsinusoidal waves at the Earth’s magnetopause, Geophys. Res. Lett., 20 ( 23 ), 2699 â 2702.
dc.identifier.citedreferenceChua, D., G. Parks, M. Brittnacher, W. Peria, G. Germany, J. Spann, and C. Carlson ( 2001 ), Energy characteristics of auroral electron precipitation: A comparison of substorms and pressure pulse related auroral activity, J. Geophys. Res., 106 ( A4 ), 5945 â 5956.
dc.identifier.citedreferenceClarke, J. T., et al. ( 2009 ), Response of Jupiter’s and Saturn’s auroral activity to the solar wind, J. Geophys. Res., 114, A05210, doi: 10.1029/2008JA013694.
dc.identifier.citedreferenceConnerney, J. E. P., M. H. Acuna, N. F. Ness, and T. Satoh ( 1998 ), New models of Jupiter’s magnetic field constrained by the Io flux tube footprint, J. Geophys. Res., 103 ( A6 ), 11,929 â 11,939.
dc.identifier.citedreferenceCowley, S. W. H., and E. J. Bunce ( 2001 ), Origin of the main auroral oval in Jupiter’s coupled magnetosphereâ ionosphere system, Planet. Space Sci., 49 ( 10 ), 1067 â 1088.
dc.identifier.citedreferenceCowley, S. W. H., and E. J. Bunce ( 2003a ), Modulation of Jovian middle magnetosphere currents and auroral precipitation by solar windâ induced compressions and expansions of the magnetosphere: Initial response and steady state, Planet.Space Sci., 51 ( 1 ), 31 â 56.
dc.identifier.citedreferenceCowley, S. W. H., and E. J. Bunce ( 2003b ), Modulation of Jupiter’s main auroral oval emissions by solar wind induced expansions and compressions of the magnetosphere, Planet. Space Sci., 51 ( 1 ), 57 â 79.
dc.identifier.citedreferenceCowley, S. W. H., J. D. Nichols, and D. J. Andrews ( 2007 ), Modulation of Jupiter’s plasma flow, polar currents, and auroral precipitation by solar windâ induced compressions and expansions of the magnetosphere: A simple theoretical model, Ann. Geophys., 25, 1433 â 1463.
dc.identifier.citedreferenceCowley, S. W. H., S. V. Badman, S. M. Imber, and S. E. Milan ( 2008 ), Comment on â Jupiter: A fundamentally different magnetospheric interaction with the solar windâ by D. J. McComas and F. Bagenal, Geophys. Res. Lett., 35, L10101, doi: 10.1029/2007GL032645.
dc.identifier.citedreferenceCravens, T. E. ( 1997 ), Comet Hyakutake Xâ ray source: Charge transfer of solar wind heavy ions, Geophys. Res. Lett., 24 ( 1 ), 105 â 108.
dc.identifier.citedreferenceCravens, T. E., E. Howell, J. H. Waite, and G. R. Gladstone ( 1995 ), Auroral oxygen precipitation at Jupiter, J. Geophys. Res., 100 ( A9 ), 17,153 â 17,161.
dc.identifier.citedreferenceCravens, T. E., J. H. Waite, T. I. Gombosi, N. Lugaz, G. R. Gladstone, B. H. Mauk, and R. J. MacDowall ( 2003 ), Implications of Jovian Xâ ray emission for magnetosphereâ ionosphere coupling, J. Geophys. Res., 108 ( A12 ), 1465, doi: 10.1029/2003JA010050.
dc.identifier.citedreferenceCravens, T. E., J. Clark, A. Bhardwaj, R. Elsner, J. H. Waite, A. N. Maurellis, G. R. Gladstone, and G. Branduardiâ Raymont ( 2006 ), Xâ ray emission from the outer planets: Albedo for scattering and fluorescence of solar Xâ rays, J. Geophys. Res., 111, A07308, doi: 10.1029/2005JA011413.
dc.identifier.citedreferenceCravens, T. E., and N. Ozak ( 2012 ), Auroral ion precipitation and acceleration at the outer planets, in Auroral Phenomenology and Magnetospheric Processes: Earth And Other Planets, edited by A.   Keiling et al., pp. 287 â 294, AGU, Washington, D. C.
dc.identifier.citedreferenceDelamere, P. A., and F. Bagenal ( 2010 ), Solar wind interaction with Jupiter’s magnetosphere, J. Geophys. Res., 115, A10201, doi: 10.1029/2010JA015347.
dc.identifier.citedreferenceDesroche, M., F. Bagenal, P. A. Delamere, and N. Erkaev ( 2012 ), Conditions at the expanded Jovian magnetopause and implications for the solar wind interaction, J. Geophys. Res., 117, A07202, doi: 10.1029/2012JA017621.
dc.identifier.citedreferenceDesroche, M., F. Bagenal, P. A. Delamere, and N. Erkaev ( 2013 ), Conditions at the magnetopause of Saturn and implications for the solar wind interaction, J. Geophys. Res. Space Physics, 118, 3087 â 3095, doi: 10.1002/jgra.50294.
dc.identifier.citedreferenceDrake, G. W. ( 1988 ), Theoretical energies for the n  = 1 and 2 states of the helium isoelectronic sequence up to z  = 100, Can. J. Phys., 66 ( 7 ), 586 â 611.
dc.identifier.citedreferenceDungey, J. W., and R. E. Loughhead ( 1954 ), Twisted magnetic fields in conducting fluids, Aust. J. Phys., 7 ( 1 ), 5 â 13.
dc.identifier.citedreferenceEcher, E., P. Zarka, W. D. Gonzalez, A. Morioka, and L. Denis ( 2010 ), Solar wind effects on Jupiter nonâ Io dam emissions during Ulysses distant encounter (2003â 2004), Astron. Astrophys., 519, A84.
dc.identifier.citedreferenceElphinstone, R. D., J. S. Murphree, and L. L. Cogger ( 1996 ), What is a global auroral substorm?, Rev. Geophys., 34 ( 2 ), 169 â 232.
dc.identifier.citedreferenceElsner, R. F., et al. ( 2005 ), Simultaneous Chandra Xâ ray, Hubble Space Telescope ultraviolet, and Ulysses radio observations of Jupiter’s aurora, J. Geophys. Res., 110, A01207, doi: 10.1029/2004JA010717.
dc.identifier.citedreferenceFairfield, D. H., A. Otto, T. Mukai, S. Kokubun, R. P. Lepping, J. T. Steinberg, A. J. Lazarus, and T. Yamamoto ( 2000 ), Geotail observations of the Kelvinâ Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields, J. Geophys. Res., 105 ( A9 ), 21,159 â 21,173.
dc.identifier.citedreferenceGeiss, J., et al. ( 1992 ), Plasma composition in Jupiter’s magnetosphere: Initial results from the solar wind ion composition spectrometer, Science, 257 ( 5076 ), 1535 â 1539.
dc.identifier.citedreferenceGladstone, G. R., J. H. Waite, and W. S. Lewis ( 1998 ), Secular and local time dependence of Jovian Xâ ray emissions, J. Geophys. Res., 103 ( E9 ), 20,083 â 20,088.
dc.identifier.citedreferenceGladstone, G. R., et al. ( 2002 ), A pulsating auroral Xâ ray hot spot on Jupiter, Nature, 415 ( 6875 ), 1000 â 1003.
dc.identifier.citedreferenceGrodent, D., J. T. Clarke, J. H. Waite, S. W. H. Cowley, J.â C. Gérard, and J. Kim ( 2003 ), Jupiter’s polar auroral emissions, J. Geophys. Res., 108 ( A10 ), 1366, doi: 10.1029/2003JA010017.
dc.identifier.citedreferenceGrodent, D., B. Bonfond, J.â C. Gérard, A. Radioti, J. Gustin, J. T. Clarke, J. Nichols, and J. E. P. Connerney ( 2008 ), Auroral evidence of a localized magnetic anomaly in Jupiter’s northern hemisphere, J. Geophys. Res., 113, A09201, doi: 10.1029/2008JA013185.
dc.identifier.citedreferenceGurnett, D. A., et al. ( 2002 ), Control of Jupiter’s radio emission and aurorae by the solar wind, Nature, 415 ( 6875 ), 985 â 987.
dc.identifier.citedreferenceGustin, J., S. W. H. Cowley, J.â C. Gèrard, G. R. Gladstone, D. Grodent, and J. T. Clarke ( 2006 ), Characteristics of Jovian morning bright FUV aurora from Hubble Space Telescope/space telescope imaging spectrograph imaging and spectral observations, J. Geophys. Res., 111, A09220, doi: 10.1029/2006JA011730.
dc.identifier.citedreferenceHanlon, P. G., M. K. Dougherty, N. Krupp, K. C. Hansen, F. J. Crary, D. T. Young, and G. Tóth ( 2004 ), Dual spacecraft observations of a compression event within the Jovian magnetosphere: Signatures of externally triggered supercorotation?, J. Geophys. Res., 109, A09S09, doi: 10.1029/2003JA010116.
dc.identifier.citedreferenceHasegawa, H., M. Fujimoto, T.â D. Phan, H. Reme, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro ( 2004 ), Transport of solar wind into Earth’s magnetosphere through rolledâ up Kelvinâ Helmholtz vortices, Nature, 430 ( 7001 ), 755 â 758.
dc.identifier.citedreferenceHasegawa, H., M. Fujimoto, K. Takagi, Y. Saito, T. Mukai, and H. Rème ( 2006 ), Singleâ spacecraft detection of rolledâ up Kelvinâ Helmholtz vortices at the flank magnetopause, J. Geophys. Res., 111, A09203, doi: 10.1029/2006JA011728.
dc.identifier.citedreferenceHess, S. L. G., B. Bonfond, P. Zarka, and D. Grodent ( 2011 ), Model of the Jovian magnetic field topology constrained by the Io auroral emissions, J. Geophys. Res., 116, A05217, doi: 10.1029/2010JA016262.
dc.identifier.citedreferenceHess, S. L. G., E. Echer, and P. Zarka ( 2012 ), Solar wind pressure effects on Jupiter decametric radio emissions independent of Io, Planet. Space Sci., 70 ( 1 ), 114 â 125.
dc.identifier.citedreferenceHess, S. L. G., E. Echer, P. Zarka, L. Lamy, and P. A Delamere ( 2014 ), Multiâ instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates, Planet. Space Sci., 99, 136 â 148.
dc.identifier.citedreferenceHill, T. W. ( 2001 ), The Jovian auroral oval, J. Geophys. Res., 106 ( A5 ), 8101 â 8107.
dc.identifier.citedreferenceHui, Y., D. R. Schultz, V. A. Kharchenko, P. C. Stancil, T. E. Cravens, C. M. Lisse, and A. Dalgarno ( 2009 ), The ionâ induced chargeâ exchange Xâ ray emission of the Jovian auroras: Magnetospheric or solar wind origin, Astrophys. J. Lett., 702 ( 2 ), L158.
dc.identifier.citedreferenceHui, Y., D. R. Schultz, V. A. Kharchenko, A. Bhardwaj, G. Branduardiâ Raymont, P. C. Stancil, T. E. Cravens, C. M. Lisse, and A. Dalgarno ( 2010 ), Comparative analysis and variability of the Jovian Xâ ray spectra detected by the Chandra and XMMâ Newton observatories, J. Geophys. Res., 115, A07102, doi: 10.1029/2009JA014854.
dc.identifier.citedreferenceJackman, C. M., and C. S. Arridge ( 2011 ), Solar cycle effects on the dynamics of Jupiter’s and Saturn’s magnetospheres, Sol. Phys., 274 ( 1â 2 ), 481 â 502.
dc.identifier.citedreferenceJohnson, J. R., S. Wing, and P. A. Delamere ( 2014 ), Kelvinâ Helmholtz instability in planetary magnetospheres, Space Sci. Rev., 184 ( 1â 4 ), 1 â 31.
dc.identifier.citedreferenceJoy, S. P., M. G. Kivelson, R. J. Walker, K. K. Khurana, C. T. Russell, and T. Ogino ( 2002 ), Probabilistic models of the Jovian magnetopause and bow shock locations, J. Geophys. Res., 107 ( A10 ), 1309, doi: 10.1029/2001JA009146.
dc.identifier.citedreferenceKaiser, M. L. ( 1993 ), Timeâ variable magnetospheric radio emissions from Jupiter, J. Geophys. Res., 98 ( E10 ), 18,757 â 18,765.
dc.identifier.citedreferenceKaranikola, I., M. Athanasiou, G. C. Anagnostopoulos, G. P. Pavlos, and P. Prekaâ Papadema ( 2004 ), Quasiâ periodic emissions (15â 80min) from the poles of Jupiter as a principal source of the largeâ scale highâ latitude magnetopause boundary layer of energetic particle, Planet. Space Sci., 52 ( 5 ), 543 â 559.
dc.identifier.citedreferenceKharchenko, V., A. Dalgarno, D. R. Schultz, and P. C. Stancil ( 2006 ), Ion emission spectra in the Jovian Xâ ray aurora, Geophys. Res. Lett., 33, L11105, doi: 10.1029/2006GL026039.
dc.identifier.citedreferenceKharchenko, V., A. Bhardwaj, A. Dalgarno, D. R. Schultz, and P. C. Stancil ( 2008 ), Modeling spectra of the north and south Jovian Xâ ray auroras, J. Geophys. Res., 113, A08229, doi: 10.1029/2008JA013062.
dc.identifier.citedreferenceKhurana, K. K., and M. G. Kivelson ( 1989 ), Ultralow frequency MHD waves in Jupiter’s middle magnetosphere, J. Geophys. Res., 94 ( A5 ), 5241 â 5254.
dc.identifier.citedreferenceKimura, T., et al ( 2016 ), Jupiter’s Xâ ray and EUV auroras monitored by Chandra, XMMâ Newton, and Hisaki satellite, J. Geophys. Res. Space Physics, 120, doi: 10.1002/2015JA021893.
dc.identifier.citedreferenceKivelson, M. G., and C. T. Russell ( 1995 ), Introduction to space physics.
dc.identifier.citedreferenceLadreiter, H. P., and Y. Leblanc ( 1989 ), Jovian hectometric radiationâ beaming, source extension, and solar wind control, Astron. Astrophys., 226, 297 â 310.
dc.identifier.citedreferenceLamy, L., et al. ( 2012 ), Earthâ based detection of Uranus’ aurorae, Geophys. Res. Lett., 39, L07105, doi: 10.1029/2012GL051312.
dc.identifier.citedreferenceLeahy, D. A., W. Darbro, R. F. Elsner, M. C. Weisskopf, S. Kahn, P. G. Sutherland, and J. E. Grindlay ( 1983 ), On searches for pulsed emission with application to four globular cluster Xâ ray sourcesâ NGC 1851, 6441, 6624, and 6712, Astrophys. J., 266, 160 â 170.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.