Show simple item record

Diffusionâ weighted imaging outside the brain: Consensus statement from an ISMRMâ sponsored workshop

dc.contributor.authorTaouli, Bachir
dc.contributor.authorBeer, Ambros J.
dc.contributor.authorChenevert, Thomas
dc.contributor.authorCollins, David
dc.contributor.authorLehman, Constance
dc.contributor.authorMatos, Celso
dc.contributor.authorPadhani, Anwar R.
dc.contributor.authorRosenkrantz, Andrew B.
dc.contributor.authorShukla‐dave, Amita
dc.contributor.authorSigmund, Eric
dc.contributor.authorTanenbaum, Lawrence
dc.contributor.authorThoeny, Harriet
dc.contributor.authorThomassin‐naggara, Isabelle
dc.contributor.authorBarbieri, Sebastiano
dc.contributor.authorCorcuera‐solano, Idoia
dc.contributor.authorOrton, Matthew
dc.contributor.authorPartridge, Savannah C.
dc.contributor.authorKoh, Dow‐mu
dc.date.accessioned2016-10-17T21:18:18Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationTaouli, Bachir; Beer, Ambros J.; Chenevert, Thomas; Collins, David; Lehman, Constance; Matos, Celso; Padhani, Anwar R.; Rosenkrantz, Andrew B.; Shukla‐dave, Amita ; Sigmund, Eric; Tanenbaum, Lawrence; Thoeny, Harriet; Thomassin‐naggara, Isabelle ; Barbieri, Sebastiano; Corcuera‐solano, Idoia ; Orton, Matthew; Partridge, Savannah C.; Koh, Dow‐mu (2016). "Diffusionâ weighted imaging outside the brain: Consensus statement from an ISMRMâ sponsored workshop." Journal of Magnetic Resonance Imaging 44(3): 521-540.
dc.identifier.issn1053-1807
dc.identifier.issn1522-2586
dc.identifier.urihttps://hdl.handle.net/2027.42/134160
dc.publisherJohn Wiley & Sons
dc.subject.othercancer
dc.subject.otherprostate
dc.subject.otherdiffusion
dc.subject.otherwhole body imaging
dc.subject.otherbreast
dc.subject.otherkidney
dc.subject.otherliver
dc.titleDiffusionâ weighted imaging outside the brain: Consensus statement from an ISMRMâ sponsored workshop
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134160/1/jmri25196_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134160/2/jmri25196.pdf
dc.identifier.doi10.1002/jmri.25196
dc.identifier.sourceJournal of Magnetic Resonance Imaging
dc.identifier.citedreferenceAmerican College of Radiology. Magnetic Resonance Prostate Imaging Reporting and Data System (MR PIâ RADS). http://www.acr.org/Qualityâ Safety/Resources/PIRADS. Accessed on: May 21, 2015.
dc.identifier.citedreferencePark JJ, Kim CK, Park SY, Park BK, Lee HM, Cho SW. Prostate cancer: role of pretreatment multiparametric 3â T MRI in predicting biochemical recurrence after radical prostatectomy. AJR Am J Roentgenol 2014; 202: W459 â 465.
dc.identifier.citedreferenceKatahira K, Takahara T, Kwee TC, et al. Ultraâ highâ bâ value diffusionâ weighted MR imaging for the detection of prostate cancer: evaluation in 201 cases with histopathological correlation. Eur Radiol 2011; 21: 188 â 196.
dc.identifier.citedreferenceBogner W, Gruber S, Pinker K, et al. Diffusionâ weighted MR for differentiation of breast lesions at 3.0â T: how does selection of diffusion protocols affect diagnosis? Radiology 2009; 253: 341 â 351.
dc.identifier.citedreferencePeters NH, Vincken KL, van den Bosch MA, Luijten PR, Mali WP, Bartels LW. Quantitative diffusion weighted imaging for differentiation of benign and malignant breast lesions: the influence of the choice of bâ values. J Magn Reson Imaging 2010; 31: 1100 â 1105.
dc.identifier.citedreferencePartridge SC, DeMartini WB, Kurland BF, Eby PR, White SW, Lehman CD. Quantitative diffusionâ weighted imaging as an adjunct to conventional breast MRI for improved positive predictive value. AJR Am J Roentgenol 2009; 193: 1716 â 1722.
dc.identifier.citedreferenceYabuuchi H, Matsuo Y, Sunami S, et al. Detection of nonâ palpable breast cancer in asymptomatic women by using unenhanced diffusionâ weighted and T2â weighted MR imaging: comparison with mammography and dynamic contrastâ enhanced MR imaging. Eur Radiol 2011; 21: 11 â 17.
dc.identifier.citedreferenceSharma U, Danishad KK, Seenu V, Jagannathan NR. Longitudinal study of the assessment by MRI and diffusionâ weighted imaging of tumor response in patients with locally advanced breast cancer undergoing neoadjuvant chemotherapy. NMR Biomed 2009; 22: 104 â 113.
dc.identifier.citedreferenceTamai K, Koyama T, Saga T, et al. The utility of diffusionâ weighted MR imaging for differentiating uterine sarcomas from benign leiomyomas. Eur Radiol 2008; 18: 723 â 730.
dc.identifier.citedreferenceThomassinâ Naggara I, Dechoux S, Bonneau C, et al. How to differentiate benign from malignant myometrial tumours using MR imaging. Eur Radiol 2013; 23: 2306 â 2314.
dc.identifier.citedreferenceBeddy P, Moyle P, Kataoka M, et al. Evaluation of depth of myometrial invasion and overall staging in endometrial cancer: comparison of diffusionâ weighted and dynamic contrastâ enhanced MR imaging. Radiology 2012; 262: 530 â 537.
dc.identifier.citedreferenceNishie A, Stolpen AH, Obuchi M, Kuehn DM, Dagit A, Andresen K. Evaluation of locally recurrent pelvic malignancy: performance of T2â and diffusionâ weighted MRI with image fusion. J Magn Reson Imaging 2008; 28: 705 â 713.
dc.identifier.citedreferenceThomassinâ Naggara I, Darai E, Cuenod CA, et al. Contribution of diffusionâ weighted MR imaging for predicting benignity of complex adnexal masses. Eur Radiol 2009; 19: 1544 â 1552.
dc.identifier.citedreferenceThomassinâ Naggara I, Toussaint I, Perrot N, et al. Characterization of complex adnexal masses: value of adding perfusionâ and diffusionâ weighted MR imaging to conventional MR imaging. Radiology 2011; 258: 793 â 803.
dc.identifier.citedreferenceKyriazi S, Collins DJ, Messiou C, et al. Metastatic ovarian and primary peritoneal cancer: assessing chemotherapy response with diffusionâ weighted MR imagingâ value of histogram analysis of apparent diffusion coefficients. Radiology 2011; 261: 182 â 192.
dc.identifier.citedreferenceDietrich O, Geith T, Reiser MF, Baurâ Melnyk A. Diffusion imaging of the vertebral bone marrow. NMR Biomed 2015 [Epub ahead of print].
dc.identifier.citedreferenceNakanishi K, Kobayashi M, Nakaguchi K, et al. Wholeâ body MRI for Detecting Metastatic Bone Tumor: Diagnostic Value of Diffusionâ weighted Images. Magn Reson Med Sci 2007; 6: 147 â 155.
dc.identifier.citedreferenceCastillo M, Arbelaez A, Smith JK, Fisher LL. Diffusionâ weighted MR imaging offers no advantage over routine noncontrast MR imaging in the detection of vertebral metastases. AJNR Am J Neuroradiol 2000; 21: 948 â 953.
dc.identifier.citedreferenceZhou XJ, Leeds NE, McKinnon GC, Kumar AJ. Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR Am J Neuroradiol 2002; 23: 165 â 170.
dc.identifier.citedreferencePatel KB, Poplawski MM, Pawha PS, Naidich TP, Tanenbaum LN. Diffusionâ weighted MRI â claw signâ improves differentiation of infectious from degenerative modic type 1 signal changes of the spine. AJNR Am J Neuroradiol 2014; 35: 1647 â 1652.
dc.identifier.citedreferenceEisenhauer EA, Therasse P, Bogaerts J, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 2009; 45: 228 â 247.
dc.identifier.citedreferenceAfaq A, Andreou A, Koh DM. Diffusionâ weighted magnetic resonance imaging for tumour response assessment: why, when and how? Cancer Imaging 2010; 10 Spec no A: S179 â 188.
dc.identifier.citedreferenceDonati OF, Chong D, Nanz D, et al. Diffusionâ weighted MR imaging of upper abdominal organs: field strength and intervendor variability of apparent diffusion coefficients. Radiology 2014; 270: 454 â 463.
dc.identifier.citedreferencePadhani AR, Makris A, Gall P, Collins DJ, Tunariu N, de Bono JS. Therapy monitoring of skeletal metastases with wholeâ body diffusion MRI. J Magn Reson Imaging 2014; 39: 1049 â 1078.
dc.identifier.citedreferenceBlackledge MD, Collins DJ, Tunariu N, et al. Assessment of treatment response by total tumor volume and global apparent diffusion coefficient using diffusionâ weighted MRI in patients with metastatic bone disease: a feasibility study. PLoS One 2014; 9: e91779.
dc.identifier.citedreferenceWurnig MC, Donati OF, Ulbrich E, et al. Systematic analysis of the intravoxel incoherent motion threshold separating perfusion and diffusion effects: proposal of a standardized algorithm. Magn Reson Med 2015; 74: 1414 â 1422.
dc.identifier.citedreferenceLemke A, Laun FB, Klauss M, et al. Differentiation of pancreas carcinoma from healthy pancreatic tissue using multiple bâ values: comparison of apparent diffusion coefficient and intravoxel incoherent motion derived parameters. Invest Radiol 2009; 44: 769 â 775.
dc.identifier.citedreferenceYoon JH, Lee JM, Yu MH, Kiefer B, Han JK, Choi BI. Evaluation of hepatic focal lesions using diffusionâ weighted MR imaging: comparison of apparent diffusion coefficient and intravoxel incoherent motionâ derived parameters. J Magn Reson Imaging 2014; 39: 276 â 285.
dc.identifier.citedreferenceEckerbom P, Hansell P, Bjerner T, Palm F, Weis J, Liss P. Intravoxel incoherent motion MR imaging of the kidney: pilot study. Adv Exp Med Biol 2013; 765: 55 â 58.
dc.identifier.citedreferenceSigmund EE, Cho GY, Kim S, et al. Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer. Magn Reson Med 2011; 65: 1437 â 1447.
dc.identifier.citedreferenceJensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of nonâ Gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432 â 1440.
dc.identifier.citedreferenceNoda Y, Kanematsu M, Goshima S, et al. Diffusion kurtosis imaging of the pancreas for the assessment of HbA1c levels. J Magn Reson Imaging 2016; 43: 159 â 165.
dc.identifier.citedreferenceSun K, Chen X, Chai W, et al. Breast cancer: diffusion kurtosis MR imagingâ diagnostic accuracy and correlation with clinicalâ pathologic factors. Radiology 2015; 277: 46 â 55.
dc.identifier.citedreferenceJambor I, Merisaari H, Taimen P, et al. Evaluation of different mathematical models for diffusionâ weighted imaging of normal prostate and prostate cancer using high bâ values: a repeatability study. Magn Reson Med 2014 [Epub ahead of print].
dc.identifier.citedreferenceBailey DL, Antoch G, Bartenstein P, et al. Combined PET/MR: the real work has just started. Summary Report of the Third International Workshop on PET/MR Imaging; February 17â 21, 2014, Tubingen, Germany. Mol Imaging Biol 2015; 17: 297 â 312.
dc.identifier.citedreferenceGrueneisen J, Schaarschmidt BM, Beiderwellen K, et al. Diagnostic value of diffusionâ weighted imaging in simultaneous 18Fâ FDG PET/MR imaging for wholeâ body staging of women with pelvic malignancies. J Nucl Med 2014; 55: 1930 â 1935.
dc.identifier.citedreferenceMetz S, Ganter C, Lorenzen S, et al. Multiparametric MR and PET imaging of intratumoral biological heterogeneity in patients with metastatic lung cancer using voxelâ byâ voxel analysis. PLoS One 2015; 10: e0132386.
dc.identifier.citedreferencePadhani AR, Liu G, Koh DM, et al. Diffusionâ weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 2009; 11: 102 â 125.
dc.identifier.citedreferenceHaacke EM, Brown RW, Thompson MR, Venkatesan R. Magnetic resonance imaging: physical principles and sequence design. New York: John Wiley & Sons; 1999.
dc.identifier.citedreferenceZech CJ, Herrmann KA, Dietrich O, Horger W, Reiser MF, Schoenberg SO. Blackâ blood diffusionâ weighted EPI acquisition of the liver with parallel imaging â comparison with a standard T2â weighted sequence for detection of focal liver lesions. Invest Radiol 2008; 43: 261 â 266.
dc.identifier.citedreferenceFillmer A, Kirchner T, Cameron D, Henning A. Constrained imageâ based B0 shimming accounting for â local minimum trapsâ in the optimization and field inhomogeneities outside the region of interest. Magn Reson Med 2015; 73: 1370 â 1380.
dc.identifier.citedreferenceLu Y, Hatzoglou V, Banerjee S, et al. Repeatability investigation of reduced fieldâ ofâ view diffusionâ weighted magnetic resonance imaging on thyroid glands. J Comput Assist Tomogr 2015; 39: 334 â 339.
dc.identifier.citedreferenceMa C, Li YJ, Pan CS, et al. High resolution diffusion weighted magnetic resonance imaging of the pancreas using reduced field of view singleâ shot echoâ planar imaging at 3â T. Magn Reson Imaging 2014; 32: 125 â 131.
dc.identifier.citedreferenceJin N, Deng J, Zhang LJ, et al. Targeted singleâ shot methods for diffusionâ weighted imaging in the kidneys. J Magn Reson Imaging 2011; 33: 1517 â 1525.
dc.identifier.citedreferenceSinger L, Wilmes LJ, Saritas EU, et al. Highâ resolution diffusionâ weighted magnetic resonance imaging in patients with locally advanced breast cancer. Acad Radiol 2012; 19: 526 â 534.
dc.identifier.citedreferenceWilmes LJ, McLaughlin RL, Newitt DC, et al. Highâ resolution diffusionâ weighted imaging for monitoring breast cancer treatment response. Acad Radiol 2013; 20: 581 â 589.
dc.identifier.citedreferenceWilm BJ, Gamper U, Henning A, Pruessmann KP, Kollias SS, Boesiger P. Diffusionâ weighted imaging of the entire spinal cord. NMR Biomed 2009; 22: 174 â 181.
dc.identifier.citedreferenceRao RK, Riffel P, Meyer M, et al. Implementation of dualâ source RF excitation in 3â T MRâ scanners allows for nearly identical ADC values compared to 1.5 T MR scanners in the abdomen. PLoS One 2012; 7: e32613.
dc.identifier.citedreferenceHoldsworth SJ, Skare S, Newbould RD, Bammer R. Robust GRAPPAâ accelerated diffusionâ weighted readoutâ segmented (RS)â EPI. Magn Reson Med 2009; 62: 1629 â 1640.
dc.identifier.citedreferenceDeng J, Miller FH, Salem R, Omary RA, Larson AC. Multishot diffusionâ weighted PROPELLER magnetic resonance imaging of the abdomen. Invest Radiol 2006; 41: 769 â 775.
dc.identifier.citedreferenceDeng J, Omary RA, Larson AC. Multishot diffusionâ weighted SPLICE PROPELLER MRI of the abdomen. Magn Reson Med 2008; 59: 947 â 953.
dc.identifier.citedreferenceLiu C, Bammer R, Kim DH, Moseley ME. Selfâ navigated interleaved spiral (SNAILS): application to highâ resolution diffusion tensor imaging. Magn Reson Med 2004; 52: 1388 â 1396.
dc.identifier.citedreferencePorter DA, Heidemann RM. High resolution diffusionâ weighted imaging using readoutâ segmented echoâ planar imaging, parallel imaging and a twoâ dimensional navigatorâ based reacquisition. Magn Reson Med 2009; 62: 468 â 475.
dc.identifier.citedreferenceTokoro H, Fujinaga Y, Ohya A, et al. Usefulness of freeâ breathing readoutâ segmented echoâ planar imaging (RESOLVE) for detection of malignant liver tumors: comparison with singleâ shot echoâ planar imaging (SSâ EPI). Eur J Radiol 2014; 83: 1728 â 1733.
dc.identifier.citedreferenceWisner DJ, Rogers N, Deshpande VS, et al. Highâ resolution diffusionâ weighted imaging for the separation of benign from malignant BIâ RADS 4/5 lesions found on breast MRI at 3T. J Magn Reson Imaging 2014; 40: 674 â 681.
dc.identifier.citedreferenceJeong EK, Kim SE, Kholmovski EG, Parker DL. Highâ resolution DTI of a localized volume using 3D singleâ shot diffusionâ weighted stimulated echoâ planar imaging (3D ssâ DWSTEPI). Magn Reson Med 2006; 56: 1173 â 1181.
dc.identifier.citedreferenceKarampinos DC, Banerjee S, King KF, Link TM, Majumdar S. Considerations in highâ resolution skeletal muscle diffusion tensor imaging using singleâ shot echo planar imaging with stimulatedâ echo preparation and sensitivity encoding. NMR Biomed 2012; 25: 766 â 778.
dc.identifier.citedreferenceSigmund EE, Sui D, Ukpebor O, et al. Stimulated echo diffusion tensor imaging and SPAIR T2â weighted imaging in chronic exertional compartment syndrome of the lower leg muscles. J Magn Reson Imaging 2013; 38: 1073 â 1082.
dc.identifier.citedreferenceSigmund EE, Novikov DS, Sui D, et al. Timeâ dependent diffusion in skeletal muscle with the random permeable barrier model (RPBM): application to normal controls and chronic exertional compartment syndrome patients. NMR Biomed 2014; 27: 519 â 528.
dc.identifier.citedreferenceNovikov DS, Fieremans E, Jensen JH, Helpern JA. Random walks with barriers. Nat Phys 2011; 7: 508 â 514.
dc.identifier.citedreferenceChenevert TL, Galban CJ, Ivancevic MK, et al. Diffusion coefficient measurement using a temperatureâ controlled fluid for quality control in multicenter studies. J Magn Reson Imaging 2011; 34: 983 â 987.
dc.identifier.citedreferenceKivrak AS, Paksoy Y, Erol C, Koplay M, Ozbek S, Kara F. Comparison of apparent diffusion coefficient values among different MRI platforms: a multicenter phantom study. Diagn Interv Radiol 2013; 19: 433 â 437.
dc.identifier.citedreferenceMalyarenko D, Galban CJ, Londy FJ, et al. Multiâ system repeatability and reproducibility of apparent diffusion coefficient measurement using an iceâ water phantom. J Magn Reson Imaging 2013; 37: 1238 â 1246.
dc.identifier.citedreferenceMalyarenko DI, Newitt D, L JW, et al. Demonstration of nonlinearity bias in the measurement of the apparent diffusion coefficient in multicenter trials. Magn Reson Med 2015 [Epub ahead of print].
dc.identifier.citedreferenceSasaki M, Yamada K, Watanabe Y, et al. Variability in absolute apparent diffusion coefficient values across different platforms may be substantial: a multivendor, multiâ institutional comparison study. Radiology 2008; 249: 624 â 630.
dc.identifier.citedreferenceBraithwaite AC, Dale BM, Boll DT, Merkle EM. Shortâ and midterm reproducibility of apparent diffusion coefficient measurements at 3.0â T diffusionâ weighted imaging of the abdomen. Radiology 2009; 250: 459 â 465.
dc.identifier.citedreferenceCoronaâ Villalobos CP, Pan L, Halappa VG, et al. Agreement and reproducibility of apparent diffusion coefficient measurements of dualâ bâ value and multiâ bâ value diffusionâ weighted magnetic resonance imaging at 1.5 Tesla in phantom and in soft tissues of the abdomen. J Comput Assist Tomogr 2013; 37: 46 â 51.
dc.identifier.citedreferenceKoh DM, Blackledge M, Collins DJ, et al. Reproducibility and changes in the apparent diffusion coefficients of solid tumours treated with combretastatin A4 phosphate and bevacizumab in a twoâ centre phase I clinical trial. Eur Radiol 2009; 19: 2728 â 2738.
dc.identifier.citedreferenceKakite S, Dyvorne H, Besa C, et al. Hepatocellular carcinoma: Shortâ term reproducibility of apparent diffusion coefficient and intravoxel incoherent motion parameters at 3.0T. J Magn Reson Imaging 2015; 41: 149 â 156.
dc.identifier.citedreferenceLe Bihan D, Breton E, Lallemand D, Grenier P, Cabanis E, Lavalâ Jeantet M. MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology 1986; 161: 401 â 407.
dc.identifier.citedreferenceKoh DM, Collins DJ, Orton MR. Intravoxel incoherent motion in body diffusionâ weighted MRI: reality and challenges. AJR Am J Roentgenol 2011; 196: 1351 â 1361.
dc.identifier.citedreferenceLe Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Lavalâ Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168: 497 â 505.
dc.identifier.citedreferenceIima M, Le Bihan D. Clinical intravoxel incoherent motion and diffusion MR imaging: past, present, and future. Radiology 2016; 278: 13 â 32.
dc.identifier.citedreferenceLuciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: intravoxel incoherent motion MR imagingâ pilot study. Radiology 2008; 249: 891 â 899.
dc.identifier.citedreferencePatel J, Sigmund EE, Rusinek H, Oei M, Babb JS, Taouli B. Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrastâ enhanced MRI alone and in combination: preliminary experience. J Magn Reson Imaging 2010; 31: 589 â 600.
dc.identifier.citedreferenceLemke A, Stieltjes B, Schad LR, Laun FB. Toward an optimal distribution of b values for intravoxel incoherent motion imaging. Magn Reson Imaging 2011; 29: 766 â 776.
dc.identifier.citedreferenceCho GY, Moy L, Zhang JL, et al. Comparison of fitting methods and bâ value sampling strategies for intravoxel incoherent motion in breast cancer. Magn Reson Med 2015; 74: 1077 â 1085.
dc.identifier.citedreferenceDyvorne HA, Galea N, Nevers T, et al. Diffusionâ weighted imaging of the liver with multiple b values: effect of diffusion gradient polarity and breathing acquisition on image quality and intravoxel incoherent motion parametersâ a pilot study. Radiology 2013; 266: 920 â 929.
dc.identifier.citedreferenceDyvorne H, Jajamovich G, Kakite S, Kuehn B, Taouli B. Intravoxel incoherent motion diffusion imaging of the liver: optimal bâ value subsampling and impact on parameter precision and reproducibility. Eur J Radiol 2014; 83: 2109 â 2113.
dc.identifier.citedreferenceZhang JL, Sigmund EE, Rusinek H, et al. Optimization of bâ value sampling for diffusionâ weighted imaging of the kidney. Magn Reson Med 2012; 67: 89 â 97.
dc.identifier.citedreferenceMerisaari H, Jambor I. Optimization of bâ value distribution for four mathematical models of prostate cancer diffusionâ weighted imaging using b values up to 2000 s/mm(2): simulation and repeatability study. Magn Reson Med 2015; 73: 1954 â 1969.
dc.identifier.citedreferenceNotohamiprodjo M, Glaser C, Herrmann KA, et al. Diffusion tensor imaging of the kidney with parallel imaging: initial clinical experience. Invest Radiol 2008; 43: 677 â 685.
dc.identifier.citedreferenceAndreou A, Koh DM, Collins DJ, et al. Measurement reproducibility of perfusion fraction and pseudodiffusion coefficient derived by intravoxel incoherent motion diffusionâ weighted MR imaging in normal liver and metastases. Eur Radiol 2013; 23: 428 â 434.
dc.identifier.citedreferenceJerome NP, Orton MR, d’Arcy JA, Collins DJ, Koh DM, Leach MO. Comparison of freeâ breathing with navigatorâ controlled acquisition regimes in abdominal diffusionâ weighted magnetic resonance images: effect on ADC and IVIM statistics. J Magn Reson Imaging 2014; 39: 235 â 240.
dc.identifier.citedreferenceLee Y, Lee SS, Kim N, et al. Intravoxel incoherent motion diffusionâ weighted MR imaging of the liver: effect of triggering methods on regional variability and measurement repeatability of quantitative parameters. Radiology 2015; 274: 405 â 415.
dc.identifier.citedreferenceKiselev VG, Il’yasov KA. Is the â biexponential diffusionâ biexponential? Magn Reson Med 2007; 57: 464 â 469.
dc.identifier.citedreferenceJensen JH, Helpern JA. MRI quantification of nonâ Gaussian water diffusion by kurtosis analysis. NMR Biomed 2010; 23: 698 â 710.
dc.identifier.citedreferenceRosenkrantz AB, Padhani AR, Chenevert TL, et al. Body diffusion kurtosis imaging: Basic principles, applications, and considerations for clinical practice. J Magn Reson Imaging 2015; 42: 1190 â 1202.
dc.identifier.citedreferenceBennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretchedâ exponential model. Magn Reson Med 2003; 50: 727 â 734.
dc.identifier.citedreferenceWinfield JM, deSouza NM, Priest AN, et al. Modelling DWâ MRI data from primary and metastatic ovarian tumours. Eur Radiol 2015; 25: 2033 â 2040.
dc.identifier.citedreferenceKwee TC, Galban CJ, Tsien C, et al. Comparison of apparent diffusion coefficients and distributed diffusion coefficients in highâ grade gliomas. J Magn Reson Imaging 2010; 31: 531 â 537.
dc.identifier.citedreferenceBennett KM, Hyde JS, Schmainda KM. Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn Reson Med 2006; 56: 235 â 239.
dc.identifier.citedreferenceYablonskiy DA, Bretthorst GL, Ackerman JJ. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003; 50: 664 â 669.
dc.identifier.citedreferenceChoi JS, Kim MJ, Choi JY, Park MS, Lim JS, Kim KW. Diffusionâ weighted MR imaging of liver on 3.0â Tesla system: effect of intravenous administration of gadoxetic acid disodium. Eur Radiol 2010; 20: 1052 â 1060.
dc.identifier.citedreferenceChiu FY, Jao JC, Chen CY, et al. Effect of intravenous gadoliniumâ DTPA on diffusionâ weighted magnetic resonance images for evaluation of focal hepatic lesions. J Comput Assist Tomogr 2005; 29: 176 â 180.
dc.identifier.citedreferenceTaouli B, Koh DM. Diffusionâ weighted MR imaging of the liver. Radiology 2010; 254: 47 â 66.
dc.identifier.citedreferenceTaouli B, Vilgrain V, Dumont E, Daire JL, Fan B, Menu Y. Evaluation of liver diffusion isotropy and characterization of focal hepatic lesions with two singleâ shot echoâ planar MR imaging sequences: prospective study in 66 patients. Radiology 2003; 226: 71 â 78.
dc.identifier.citedreferenceParikh T, Drew SJ, Lee VS, et al. Focal liver lesion detection and characterization with diffusionâ weighted MR imaging: comparison with standard breathâ hold T2â weighted imaging. Radiology 2008; 246: 812 â 822.
dc.identifier.citedreferenceWu LM, Hu J, Gu HY, Hua J, Xu JR. Can diffusionâ weighted magnetic resonance imaging (DWâ MRI) alone be used as a reliable sequence for the preoperative detection and characterisation of hepatic metastases?. A metaâ analysis. Eur J Cancer 2013; 49: 572 â 584.
dc.identifier.citedreferenceLewin M, Poujolâ Robert A, Boelle PY, et al. Diffusionâ weighted magnetic resonance imaging for the assessment of fibrosis in chronic hepatitis C. Hepatology 2007; 46: 658 â 665.
dc.identifier.citedreferenceWang Y, Ganger DR, Levitsky J, et al. Assessment of chronic hepatitis and fibrosis: comparison of MR elastography and diffusionâ weighted imaging. AJR Am J Roentgenol 2011; 196: 553 â 561.
dc.identifier.citedreferenceDyvorne HA, Jajamovich GH, Bane O, et al. Prospective comparison of magnetic resonance imaging to transient elastography and serum markers for liver fibrosis detection. Liver Int 2016 [Epub ahead of print].
dc.identifier.citedreferenceBarral M, Taouli B, Guiu B, et al. Diffusionâ weighted MR imaging of the pancreas: current status and recommendations. Radiology 2015; 274: 45 â 63.
dc.identifier.citedreferenceShinya S, Sasaki T, Nakagawa Y, Guiquing Z, Yamamoto F, Yamashita Y. The efficacy of diffusionâ weighted imaging for the detection and evaluation of acute pancreatitis. Hepatogastroenterology 2009; 56: 1407 â 1410.
dc.identifier.citedreferenceIslim F, Salik AE, Bayramoglu S, Guven K, Alis H, Turhan AN. Nonâ invasive detection of infection in acute pancreatic and acute necrotic collections with diffusionâ weighted magnetic resonance imaging: preliminary findings. Abdom Imaging 2014; 39: 472 â 481.
dc.identifier.citedreferencePark MJ, Kim YK, Choi SY, Rhim H, Lee WJ, Choi D. Preoperative detection of small pancreatic carcinoma: value of adding diffusionâ weighted imaging to conventional MR imaging for improving confidence level. Radiology 2014; 273: 433 â 443.
dc.identifier.citedreferenceKang KM, Lee JM, Yoon JH, Kiefer B, Han JK, Choi BI. Intravoxel incoherent motion diffusionâ weighted MR imaging for characterization of focal pancreatic lesions. Radiology 2014; 270: 444 â 453.
dc.identifier.citedreferenceSchmidâ Tannwald C, Schmidâ Tannwald CM, Morelli JN, et al. Comparison of abdominal MRI with diffusionâ weighted imaging to 68Gaâ DOTATATE PET/CT in detection of neuroendocrine tumors of the pancreas. Eur J Nucl Med Mol Imaging 2013; 40: 897 â 907.
dc.identifier.citedreferenceWang Y, Chen ZE, Yaghmai V, et al. Diffusionâ weighted MR imaging in pancreatic endocrine tumors correlated with histopathologic characteristics. J Magn Reson Imaging 2011; 33: 1071 â 1079.
dc.identifier.citedreferenced’Assignies G, Fina P, Bruno O, et al. High sensitivity of diffusionâ weighted MR imaging for the detection of liver metastases from neuroendocrine tumors: comparison with T2â weighted and dynamic gadoliniumâ enhanced MR imaging. Radiology 2013; 268: 390 â 399.
dc.identifier.citedreferenceThoeny HC, De Keyzer F. Diffusionâ weighted MR imaging of native and transplanted kidneys. Radiology 2011; 259: 25 â 38.
dc.identifier.citedreferenceTaouli B, Thakur RK, Mannelli L, et al. Renal lesions: characterization with diffusionâ weighted imaging versus contrastâ enhanced MR imaging. Radiology 2009; 251: 398 â 407.
dc.identifier.citedreferenceWang H, Cheng L, Zhang X, et al. Renal cell carcinoma: diffusionâ weighted MR imaging for subtype differentiation at 3.0 T. Radiology 2010; 257: 135 â 143.
dc.identifier.citedreferenceLi Q, Li J, Zhang L, Chen Y, Zhang M, Yan F. Diffusionâ weighted imaging in assessing renal pathology of chronic kidney disease: a preliminary clinical study. Eur J Radiol 2014; 83: 756 â 762.
dc.identifier.citedreferenceThoeny HC, Zumstein D, Simonâ Zoula S, et al. Functional evaluation of transplanted kidneys with diffusionâ weighted and BOLD MR imaging: initial experience. Radiology 2006; 241: 812 â 821.
dc.identifier.citedreferenceEisenberger U, Binser T, Thoeny HC, Boesch C, Frey FJ, Vermathen P. Living renal allograft transplantation: diffusionâ weighted MR imaging in longitudinal followâ up of the donated and the remaining kidney. Radiology 2014; 270: 800 â 808.
dc.identifier.citedreferenceSuo ST, Cao MQ, Ding YZ, Yao QY, Wu GY, Xu JR. Apparent diffusion coefficient measurements of bilateral kidneys at 3â T MRI: effects of age, gender, and laterality in healthy adults. Clin Radiol 2014; 69: e491 â 496.
dc.identifier.citedreferenceLanger DL, van der Kwast TH, Evans AJ, et al. Intermixed normal tissue within prostate cancer: effect on MR imaging measurements of apparent diffusion coefficient and T2â sparse versus dense cancers. Radiology 2008; 249: 900 â 908.
dc.identifier.citedreferenceGibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol 2009; 44: 572 â 576.
dc.identifier.citedreferencevan As NJ, de Souza NM, Riches SF, et al. A study of diffusionâ weighted magnetic resonance imaging in men with untreated localised prostate cancer on active surveillance. Eur Urol 2009; 56: 981 â 987.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.