Show simple item record

Hydrogen Peroxide Solvates of 2,4,6,8,10,12‐Hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane

dc.contributor.authorBennion, Jonathan C.
dc.contributor.authorChowdhury, Nilanjana
dc.contributor.authorKampf, Jeff W.
dc.contributor.authorMatzger, Adam J.
dc.date.accessioned2016-10-17T21:18:27Z
dc.date.available2017-12-01T21:54:12Zen
dc.date.issued2016-10-10
dc.identifier.citationBennion, Jonathan C.; Chowdhury, Nilanjana; Kampf, Jeff W.; Matzger, Adam J. (2016). "Hydrogen Peroxide Solvates of 2,4,6,8,10,12‐Hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane." Angewandte Chemie International Edition 55(42): 13118-13121.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/134167
dc.description.abstractTwo polymorphic hydrogen peroxide solvates of 2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (CL‐20; wurtzitane is an alternative name to iceane) were obtained using hydrated α‐CL‐20 as a guide. These novel H2O2 solvates have high crystallographic densities (1.96 and 2.03 g cm−3, respectively), high predicted detonation velocities/pressures (with one solvate performing better than ϵ‐CL‐20), and a sensitivity similar to that of ϵ‐CL‐20. The use of hydrated materials as a guide will be important in the development of other energetic materials with hydrogen peroxide. These solvates represent an area of energetic materials that has yet to be explored.Supercharged solvates: Two polymorphic hydrogen peroxide solvates of 2,4,6,8,10,12‐hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane (CL‐20) were obtained with high crystallographic densities. Both solvates are predicted to have high detonation velocities/pressures (with one solvate performing better than ϵ‐CL‐20). H2O2 solvate formation allows for a simple method for improving the oxygen balance of existing materials.
dc.publisherWiley Periodicals, Inc.
dc.subject.otheroxygen balance
dc.subject.othersensitivity
dc.subject.othersolvates
dc.subject.otherhydrates
dc.subject.otherexplosives
dc.titleHydrogen Peroxide Solvates of 2,4,6,8,10,12‐Hexanitro‐2,4,6,8,10,12‐hexaazaisowurtzitane
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134167/1/anie201607130.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134167/2/anie201607130_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134167/3/anie201607130-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/anie.201607130
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreference 
dc.identifier.citedreferenceW. C. Lothrop, G. R. Handrick, Chem. Rev. 1949, 44, 419 – 445;
dc.identifier.citedreferenceA. Mustafa, A. A. Zahran, J. Chem. Eng. Data 1963, 8, 135 – 150.
dc.identifier.citedreference 
dc.identifier.citedreferenceS. Bonifacio, G. Festa, A. R. Sorge, J. Propul. Power 2013, 29, 1130 – 1137;
dc.identifier.citedreferenceO. V. Romantsova, V. B. Ulybin, Acta Astronaut. 2015, 109, 231 – 234;
dc.identifier.citedreferenceJ. J. Rusek, J. Propul. Power 1996, 12, 574 – 579.
dc.identifier.citedreference 
dc.identifier.citedreferenceN.-D. H. Gamage, B. Stiasny, J. Stierstorfer, P. D. Martin, T. M. Klapötke, C. H. Winter, Chem. Commun. 2015, 51, 13298 – 13300;
dc.identifier.citedreferenceN.-D. H. Gamage, B. Stiasny, J. Stierstorfer, P. D. Martin, T. M. Klapötke, C. H. Winter, Chem. Eur. J. 2016, 22, 2582 – 2585;
dc.identifier.citedreferenceR. Matyáš, J. Pachman, Propellants Explos. Pyrotech. 2010, 35, 31 – 37;
dc.identifier.citedreferenceA. Wierzbicki, E. A. Salter, E. A. Cioffi, E. D. Stevens, J. Phys. Chem. A 2001, 105, 8763 – 8768.
dc.identifier.citedreferenceO. Bolton, L. R. Simke, P. F. Pagoria, A. J. Matzger, Cryst. Growth Des. 2012, 12, 4311 – 4314.
dc.identifier.citedreferenceK. B. Landenberger, O. Bolton, A. J. Matzger, Angew. Chem. Int. Ed. 2013, 52, 6468 – 6471; Angew. Chem. 2013, 125, 6596 – 6599;
dc.identifier.citedreferenceK. B. Landenberger, O. Bolton, A. J. Matzger, J. Am. Chem. Soc. 2015, 137, 5074 – 5079.
dc.identifier.citedreferenceL. Pu, J.-J. Xu, X.-F. Liu, J. Sun, J. Energ. Mater. 2016, 34, 205 – 215.
dc.identifier.citedreferenceA. L. Spek, Acta Crystallogr. Sect. C 2015, 71, 9 – 18.
dc.identifier.citedreference 
dc.identifier.citedreferenceO. Bolton, A. J. Matzger, Angew. Chem. Int. Ed. 2011, 50, 8960 – 8963; Angew. Chem. 2011, 123, 9122 – 9125;
dc.identifier.citedreferenceMolecular volumes were calculated using Spartan14 V1.1.2 by determining the equilibrium geometry at the ground state for structures of the pure components with the semi-empirical AM1 method.
dc.identifier.citedreferenceJ. C. Bennion, A. McBain, S. F. Son, A. J. Matzger, Cryst. Growth Des. 2015, 15, 2545 – 2549.
dc.identifier.citedreferenceCheetah 7.0 calculations were preformed with the Sandia JCZS product library revision 32.
dc.identifier.citedreferenceCCDC  1495519 ( 1 ), 1495520 ( 2 ), and 1495521 (α-CL-20) contain the supplementary crystallographic data for this paper. These data are provided free of charge by The Cambridge Crystallographic Data Centre.
dc.identifier.citedreferenceH. G. Brittain, Drugs Pharm. Sci. 1999, 95, 128.
dc.identifier.citedreference 
dc.identifier.citedreferenceE. V. Nikitina, G. L. Starova, O. V. Frank-Kamenetskaya, M. S. Pevzner, Kristallografiya 1982, 27, 485;
dc.identifier.citedreferenceR. Haiges, G. Belanger-Chabot, S. M. Kaplan, K. O. Christe, Dalton Trans. 2015, 44, 7586 – 7594;
dc.identifier.citedreferenceP. Main, R. E. Cobbledick, R. W. H. Small, Acta Crystallogr. Sect. C 1985, 41, 1351 – 1354;
dc.identifier.citedreferenceA. T. Nielsen, A. P. Chafin, S. L. Christian, D. W. Moore, M. P. Nadler, R. A. Nissan, D. J. Vanderah, R. D. Gilardi, C. F. George, J. L. Flippen-Anderson, Tetrahedron 1998, 54, 11793 – 11812;
dc.identifier.citedreferenceA. A. Dippold, T. M. Klapötke, Chem. Eur. J. 2012, 18, 16742 – 16753;
dc.identifier.citedreferenceH. Gao, J. N. M. Shreeve, Chem. Rev. 2011, 111, 7377 – 7436.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. B. Landenberger, A. J. Matzger, Cryst. Growth Des. 2010, 10, 5341 – 5347;
dc.identifier.citedreferenceK. B. Landenberger, A. J. Matzger, Cryst. Growth Des. 2012, 12, 3603 – 3609;
dc.identifier.citedreferenceD. I. A. Millar, H. E. Maynard-Casely, D. R. Allan, A. S. Cumming, A. R. Lennie, A. J. Mackay, I. D. H. Oswald, C. C. Tang, C. R. Pulham, CrystEngComm 2012, 14, 3742 – 3749.
dc.identifier.citedreferenceThe OB for an organic material can be calculated using the following equation: −1600(2  a +0.5  b − d )/MW, where a, b, c, d are the numbers of carbon, hydrogen, nitrogen, and oxygen atoms, respectively, and MW is the molecular weight of the material.
dc.identifier.citedreference 
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.