Show simple item record

Epigenetic Reprogramming in Naive CD4+ T Cells Favoring T Cell Activation and Nonâ Th1 Effector T Cell Immune Response as an Early Event in Lupus Flares

dc.contributor.authorCoit, Patrick
dc.contributor.authorDozmorov, Mikhail G.
dc.contributor.authorMerrill, Joan T.
dc.contributor.authorMcCune, W. Joseph
dc.contributor.authorMaksimowicz‐mckinnon, Kathleen
dc.contributor.authorWren, Jonathan D.
dc.contributor.authorSawalha, Amr H.
dc.date.accessioned2016-10-17T21:18:47Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationCoit, Patrick; Dozmorov, Mikhail G.; Merrill, Joan T.; McCune, W. Joseph; Maksimowicz‐mckinnon, Kathleen ; Wren, Jonathan D.; Sawalha, Amr H. (2016). "Epigenetic Reprogramming in Naive CD4+ T Cells Favoring T Cell Activation and Nonâ Th1 Effector T Cell Immune Response as an Early Event in Lupus Flares." Arthritis & Rheumatology 68(9): 2200-2209.
dc.identifier.issn2326-5191
dc.identifier.issn2326-5205
dc.identifier.urihttps://hdl.handle.net/2027.42/134183
dc.publisherWiley Periodicals, Inc.
dc.titleEpigenetic Reprogramming in Naive CD4+ T Cells Favoring T Cell Activation and Nonâ Th1 Effector T Cell Immune Response as an Early Event in Lupus Flares
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelRheumatology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134183/1/art39720_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134183/2/art39720.pdf
dc.identifier.doi10.1002/art.39720
dc.identifier.sourceArthritis & Rheumatology
dc.identifier.citedreferenceYin Y, Choi SC, Xu Z, Perry DJ, Seay H, Croker BP, et al. Normalization of CD4+ T cell metabolism reverses lupus. Sci Transl Med 2015; 7: 274ra18.
dc.identifier.citedreferenceYu G, Wang LG, He QY. ChIPseeker: an R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 2015; 31: 2382 â 3.
dc.identifier.citedreferenceFalcon S, Gentleman R. Using GOstats to test gene lists for GO term association. Bioinformatics 2007; 23: 257 â 8.
dc.identifier.citedreferenceDozmorov MG, Cara LR, Giles CB, Wren JD. GenomeRunner: automating genome exploration. Bioinformatics 2012; 28: 419 â 20.
dc.identifier.citedreferenceRosenbloom KR, Sloan CA, Malladi VS, Dreszer TR, Learned K, Kirkup VM, et al. ENCODE data in the UCSC Genome Browser: year 5 update. Nucleic Acids Res 2013; 41: D56 â 63.
dc.identifier.citedreferenceStorey J. A direct approach to false discovery rates. J R Stat Soc Ser B 1995; 64: 479 â 98.
dc.identifier.citedreferenceWren JD, Bekeredjian R, Stewart JA, Shohet RV, Garner HR. Knowledge discovery by automated identification and ranking of implicit relationships. Bioinformatics 2004; 20: 389 â 98.
dc.identifier.citedreferenceBolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 2014; 30: 2114 â 20.
dc.identifier.citedreferenceRumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, Brudno M. SHRiMP: accurate mapping of short colorâ space reads. PLoS Comput Biol 2009; 5: e1000386.
dc.identifier.citedreferenceIrizarry RA, Hobbs B, Collin F, Beazerâ Barclay YD, Antonellis KJ, Scherf U, et al. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003; 4: 249 â 64.
dc.identifier.citedreferenceZhao E, Maj T, Kryczek I, Li W, Wu K, Zhao L, et al. Cancer mediates effector T cell dysfunction by targeting microRNAs and EZH2 via glycolysis restriction. Nat Immunol 2016; 17: 95 â 103.
dc.identifier.citedreferenceCao R, Wang L, Wang H, Xia L, Erdjumentâ Bromage H, Tempst P, et al. Role of histone H3 lysine 27 methylation in Polycombâ group silencing. Science 2002; 298: 1039 â 43.
dc.identifier.citedreferenceVire E, Brenner C, Deplus R, Blanchon L, Fraga M, Didelot C, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439: 871 â 4.
dc.identifier.citedreferencePlath K, Fang J, Mlynarczykâ Evans SK, Cao R, Worringer KA, Wang H, et al. Role of histone H3 lysine 27 methylation in X inactivation. Science 2003; 300: 131 â 5.
dc.identifier.citedreferenceSarma K, Cifuentesâ Rojas C, Ergun A, Del Rosario A, Jeon Y, White F, et al. ATRX directs binding of PRC2 to Xist RNA and Polycomb targets. Cell 2014; 159: 869 â 83.
dc.identifier.citedreferenceKoyanagi M, Baguet A, Martens J, Margueron R, Jenuwein T, Bix M. EZH2 and histone 3 trimethyl lysine 27 associated with Il4 and Il13 gene silencing in Th1 cells. J Biol Chem 2005; 280: 31470 â 7.
dc.identifier.citedreferenceTong Q, He S, Xie F, Mochizuki K, Liu Y, Mochizuki I, et al. Ezh2 regulates transcriptional and posttranslational expression of Tâ bet and promotes Th1 cell responses mediating aplastic anemia in mice. J Immunol 2014; 192: 5012 â 22.
dc.identifier.citedreferenceYang XP, Jiang K, Hirahara K, Vahedi G, Afzali B, Sciume G, et al. EZH2 is crucial for both differentiation of regulatory T cells and T effector cell expansion. Sci Rep 2015; 5: 10643.
dc.identifier.citedreferenceTumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, et al. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4 + T helper type 1 and type 2 cells. Immunity 2013; 39: 819 â 32.
dc.identifier.citedreferenceBentham J, Morris DL, Cunninghame Graham DS, Pinder CL, Tombleson P, Behrens TW, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat Genet 2015; 47: 1457 â 64.
dc.identifier.citedreferenceSun C, Molineros JE, Looger LL, Zhou XJ, Kim K, Okada Y, et al. Highâ density genotyping of immuneâ related loci identifies new SLE risk variants in individuals with Asian ancestry. Nat Genet 2016; 48: 323 â 30.
dc.identifier.citedreferenceCoit P, Ognenovski M, Gensterblum E, Maksimowiczâ McKinnon K, Wren JD, Sawalha AH. Ethnicityâ specific epigenetic variation in naive CD4+ T cells and the susceptibility to autoimmunity. Epigenetics Chromatin 2015; 8: 49.
dc.identifier.citedreferenceCoit P, Jeffries M, Altorok N, Dozmorov MG, Koelsch KA, Wren JD, et al. Genomeâ wide DNA methylation study suggests epigenetic accessibility and transcriptional poising of interferonâ regulated genes in naive CD4+ T cells from lupus patients. J Autoimmun 2013; 43: 78 â 84.
dc.identifier.citedreferenceJeffries MA, Sawalha AH. Autoimmune disease in the epigenetic era: how has epigenetics changed our understanding of disease and how can we expect the field to evolve? Expert Rev Clin Immunol 2015; 11: 45 â 58.
dc.identifier.citedreferenceDeng C, Kaplan MJ, Yang J, Ray D, Zhang Z, McCune WJ, et al. Decreased Rasâ mitogenâ activated protein kinase signaling may cause DNA hypomethylation in T lymphocytes from lupus patients. Arthritis Rheum 2001; 44: 397 â 407.
dc.identifier.citedreferenceSawalha AH, Jeffries M, Webb R, Lu Q, Gorelik G, Ray D, et al. Defective Tâ cell ERK signaling induces interferonâ regulated gene expression and overexpression of methylationâ sensitive genes similar to lupus patients. Genes Immun 2008; 9: 368 â 78.
dc.identifier.citedreferenceGorelik G, Sawalha AH, Patel D, Johnson K, Richardson B. T cell PKCδ kinase inactivation induces lupusâ like autoimmunity in mice. Clin Immunol 2015; 158: 193 â 203.
dc.identifier.citedreferenceSawalha AH. Epigenetics and Tâ cell immunity. Autoimmunity 2008; 41: 245 â 52.
dc.identifier.citedreferenceMoulton VR, Tsokos GC. T cell signaling abnormalities contribute to aberrant immune cell function and autoimmunity. J Clin Invest 2015; 125: 2220 â 7.
dc.identifier.citedreferenceHochberg MC, for the Diagnostic and Therapeutic Criteria Committee of the American College of Rheumatology. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus [letter]. Arthritis Rheum 1997; 40: 1725.
dc.identifier.citedreferenceBombardier C, Gladman DD, Urowitz MB, Caron D, Chang DH, and the Committee on Prognosis Studies in SLE. Derivation of the SLEDAI: a disease activity index for lupus patients. Arthritis Rheum 1992; 35: 630 â 40.
dc.identifier.citedreferenceCoit P, Renauer P, Jeffries MA, Merrill JT, McCune WJ, Maksimowiczâ McKinnon K, et al. Renal involvement in lupus is characterized by unique DNA methylation changes in naive CD4+ T cells. J Autoimmun 2015; 61: 29 â 35.
dc.identifier.citedreferenceDavis S, Du P, Bilke S, Triche TJ, Bootwalla M. methylumi: Handle Illumina methylation data. R package: version 2.16.0. 2015.
dc.identifier.citedreferenceLeek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in highâ throughput experiments. Bioinformatics 2012; 28: 882 â 3.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.