Show simple item record

Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data

dc.contributor.authorSakai, Shotaro
dc.contributor.authorAndersson, Laila
dc.contributor.authorCravens, Thomas E.
dc.contributor.authorMitchell, David L.
dc.contributor.authorMazelle, Christian
dc.contributor.authorRahmati, Ali
dc.contributor.authorFowler, Christopher M.
dc.contributor.authorBougher, Stephen W.
dc.contributor.authorThiemann, Edward M. B.
dc.contributor.authorEparvier, Francis G.
dc.contributor.authorFontenla, Juan M.
dc.contributor.authorMahaffy, Paul R.
dc.contributor.authorConnerney, John E. P.
dc.contributor.authorJakosky, Bruce M.
dc.date.accessioned2016-10-17T21:18:50Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationSakai, Shotaro; Andersson, Laila; Cravens, Thomas E.; Mitchell, David L.; Mazelle, Christian; Rahmati, Ali; Fowler, Christopher M.; Bougher, Stephen W.; Thiemann, Edward M. B.; Eparvier, Francis G.; Fontenla, Juan M.; Mahaffy, Paul R.; Connerney, John E. P.; Jakosky, Bruce M. (2016). "Electron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data." Journal of Geophysical Research: Space Physics 121(7): 7049-7066.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134186
dc.description.abstractThis paper presents a study of the energetics of the dayside ionosphere of Mars using models and data from several instruments on board the Mars Atmosphere and Volatile EvolutioN spacecraft. In particular, calculated photoelectron fluxes are compared with suprathermal electron fluxes measured by the Solar Wind Electron Analyzer, and calculated electron temperatures are compared with temperatures measured by the Langmuir Probe and Waves experiment. The major heat source for the thermal electrons is Coulomb heating from the suprathermal electron population, and cooling due to collisional rotational and vibrational CO2 dominates the energy loss. The models used in this study were largely able to reproduce the observed high topside ionosphere electron temperatures (e.g., 3000 K at 300 km altitude) without using a topside heat flux when magnetic field topologies consistent with the measured magnetic field were adopted. Magnetic topology affects both suprathermal electron transport and thermal electron heat conduction. The effects of using two different solar irradiance models were also investigated. In particular, photoelectron fluxes and electron temperatures found using the Heliospheric Environment Solar Spectrum Radiation irradiance were higher than those with the Flare Irradiance Spectrum Model‐Mars. The electron temperature is shown to affect the O2+ dissociative recombination rate coefficient, which in turn affects photochemical escape of oxygen from Mars.Key PointsHigh electron temperatures (e.g., 3000 K) can be obtained in the Martian topside ionosphere without invoking solar wind heatingThe magnetic topology is a key factor in determining electron temperatures and photoelectron fluxes at MarsDetails of the Martian ionospheric electron temperature are shown to significantly affect electron‐ion recombination and hot O production
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMars
dc.subject.otherelectron temperature
dc.subject.otherionosphere
dc.subject.otherphotoelectrons
dc.titleElectron energetics in the Martian dayside ionosphere: Model comparisons with MAVEN data
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134186/1/jgra52757_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134186/2/jgra52757.pdf
dc.identifier.doi10.1002/2016JA022782
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceLillis, R. J., et al. ( 2015 ), Characterizing atmospheric escape from Mars today and through time, with MAVEN, Space Sci. Rev., 195, 357 – 422, doi: 10.1007/s11214-015-0165-8.
dc.identifier.citedreferenceFrahm, R. A., et al. ( 2006 ), Carbon dioxide photoelectron energy peaks at Mars, Icarus, 182, 371 – 382, doi: 10.1016/j.icarus.2006.01.014.
dc.identifier.citedreferenceGan, L., T. E. Cravens, and M. Horanyi ( 1990 ), Electrons in the ionopause boundary layer of Venus, J. Geophys. Res., 95, 19,023 – 19,035, doi: 10.1029/JA095iA11p19023.
dc.identifier.citedreferenceGan, L., C. N. Keller, and T. E. Cravens ( 1992 ), Electrons in the ionosphere of Titan, J. Geophys. Res., 97, 12,137 – 12,151, doi: 10.1029/92JA00300.
dc.identifier.citedreferenceHalekas, J. S., et al. ( 2015 ), MAVEN observations of solar wind hydrogen deposition in the atmosphere of Mars, Geophys. Res. Lett., 42, 8901 – 8909, doi: 10.1002/2015GL064693.
dc.identifier.citedreferenceHanson, W. B., and G. P. Mantas ( 1988 ), Viking electron temperature measurements: Evidence of a magnetic field in the Martian ionosphere, J. Geophys. Res., 93, 7538 – 7544, doi: 10.1029/JA093iA07p07538.
dc.identifier.citedreferenceHanson, W. B., S. Santatani, and D. R. Zuccaro ( 1977 ), The Martian ionosphere as observed by the Viking Retarding Potential Analyzer, J. Geophys. Res., 82, 4351 – 4363, doi: 10.1029/JS082i028p04351.
dc.identifier.citedreferenceHarada, Y., et al. ( 2015 ), Magnetic reconnection in the near‐Mars magnetotail: MAVEN observations, Geophys. Res. Lett., 42, 8838 – 8845, doi: 10.1002/2015GL065004.
dc.identifier.citedreferenceHarada, Y., et al. ( 2016 ), MAVEN observations of energy‐time dispersed electron signatures in Martian crustal magnetic fields, Geophys. Res. Lett., 43, 939 – 944, doi: 10.1002/2015GL067040.
dc.identifier.citedreferenceItikawa, Y. ( 2002 ), Cross sections for electron collisions with carbon dioxide, J. Phys. Chem. Ref. Data, 31, 749 – 767, doi: 10.1063/1.1481879.
dc.identifier.citedreferenceItikawa, Y., and A. Ichimura ( 1990 ), Cross sections for collision of electrons and photons with atomic oxygen, J. Phys. Chem. Ref. Data, 19, 637 – 651, doi: 10.1063/1.555857.
dc.identifier.citedreferenceJakosky, B. M., et al. ( 2015 ), The Mars Atmosphere and Volatile Evolution (MAVEN) mission, Space Sci. Rev., 195, 3 – 48, doi: 10.1007/s11214-015-0139-x.
dc.identifier.citedreferenceJohnson, R. E. ( 1978 ), Comment on ion and electron temperatures in the Martian upper atmosphere, Geophys. Res. Lett., 5, 989 – 992, doi: 10.1029/GL005i011p00989.
dc.identifier.citedreferenceKrymskii, A. M., T. K. Breus, N. F. Ness, M. H. Acuña, J. E. P. Connerney, D. H. Crider, D. L. Mitchell, and S. J. Bauer ( 2002 ), Structure of the magnetic field fluxes connected with crustal magnetization and topside ionosphere at Mars, J. Geophys. Res., 107 ( A9 ), 1245, doi: 10.1029/2001JA000239.
dc.identifier.citedreferenceLiemohn, M. W., et al. ( 2006 ), Numerical interpretation of high‐altitude photoelectron observations, Icarus, 182, 383 – 395, doi: 10.1016/j.icarus.2005.10.036.
dc.identifier.citedreferenceMa, Y., A. F. Nagy, K. C. Hansen, D. L. DeZeeuw, T. I. Gombosi, and K. G. Powell ( 2002 ), Three‐dimensional multispecies MHD studies of the solar wind interaction with Mars in the presence of crustal fields, J. Geophys. Res., 107 ( A10 ), 1282, doi: 10.1029/2002JA009293.
dc.identifier.citedreferenceMa, Y., A. F. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367.
dc.identifier.citedreferenceMa, Y., X. Fang, C. T. Russell, A. F. Nagy, G. Toth, J. G. Luhmann, D. A. Brain, and C. Dong ( 2014 ), Effects of crustal field rotation on the solar wind plasma interaction with Mars, Geophys. Res. Lett., 41, 6563 – 6569, doi: 10.1002/2014GL060785.
dc.identifier.citedreferenceMahaffy, P. R., et al. ( 2015 ), The neutral gas and ion mass spectrometer on the Mars atmosphere and volatile evolution mission, Space Sci. Rev., 195, 49 – 73, doi: 10.1007/s11214-014-0091-1.
dc.identifier.citedreferenceMatta, M., M. Galand, L. Moore, M. Mendillo, and P. Withers ( 2014 ), Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations, Icarus, 227, 78 – 88, doi: 10.1016/j.icarus.2013.09.006.
dc.identifier.citedreferenceMcFadden, J. P., et al. ( 2015 ), MAVEN SupraThermal and Thermal Ion Composition (STATIC) instrument, Space Sci. Rev., 195, 199 – 256, doi: 10.1007/s11214-015-0175-6.
dc.identifier.citedreferenceMitchell, D. L., et al. ( 2016 ), The MAVEN Solar Wind Electron Analyzer, Space Sci. Rev., 200, 495 – 528, doi: 10.1007/s11214-015-0232-1.
dc.identifier.citedreferenceMott‐Smith, H. M., and I. Langmuir ( 1926 ), The theory of collectors in gaseous discharges, Phys. Rev., 28 ( 4 ), 727 – 763, doi: 10.1103/PhysRev.28.727.
dc.identifier.citedreferenceNagy, A. F., and P. M. Banks ( 1970 ), Photoelectron fluxes in the ionosphere, J. Geophys. Res., 75, 6260 – 6270, doi: 10.1029/JA075i031p06260.
dc.identifier.citedreferenceNagy, A. F., and T. E. Cravens ( 1988 ), Hot oxygen atoms in the upper atmospheres of Venus and Mars, Geophys. Res. Lett., 15, 433 – 435, doi: 10.1029/GL015i005p00433.
dc.identifier.citedreferenceOzak, N., T. E. Cravens, G. H. Jones, A. J. Coates, and I. P. Robertson ( 2012 ), Modeling of electron fluxes in the Enceladus plume, J. Geophys. Res., 117, A06220, doi: 10.1029/2011JA017497.
dc.identifier.citedreferencePeverall, R., et al. ( 2001 ), Dissociative recombination and excitation of O 2 +: Cross sections, product yields and implications for studies of ionospheric airglows, J. Chem. Phys., 114, 6679 – 6689, doi: 10.1063/1.1349079.
dc.identifier.citedreferenceRahmati, A., D. E. Larson, T. E. Cravens, R. J. Lillis, P. A. Dunn, J. S. Halekas, J. E. Connerney, F. G. Eparvier, E. M. B. Thiemann, and B. M. Jakosky ( 2015 ), MAVEN insights into oxygen pickup ions at Mars, Geophys. Res. Lett., 42, 8870 – 8876, doi: 10.1002/2015GL065262.
dc.identifier.citedreferenceRichard, M. S., T. E. Cravens, I. P. Robertson, J. H. Waite, J.‐E. Wahlund, F. J. Crary, and A. J. Coates ( 2011 ), Energetics of Titan’s ionosphere: Model comparisons with Cassini data, J. Geophys. Res., 116, A09310, doi: 10.1029/2011JA016603.
dc.identifier.citedreferenceRohrbaugh, R. P., J. S. Nisbet, E. Bleuler, and J. R. Herman ( 1979 ), The effect of energetically produced O 2 + on the ion temperatures of the Martian thermosphere, J. Geophys. Res., 84, 3327 – 3338, doi: 10.1029/JA084iA07p03327.
dc.identifier.citedreferenceSakai, S., A. Rahmati, D. L. Mitchell, T. E. Cravens, S. W. Bougher, C. Mazelle, W. K. Peterson, F. G. Eparvier, J. M. Fontenla, and B. M. Jakosky ( 2015 ), Model insights into energetic photoelectrons measured at Mars by MAVEN, Geophys. Res. Lett., 42, 8894 – 8900, doi: 10.1002/2015GL065169.
dc.identifier.citedreferenceSchunk, R. W., and A. F. Nagy ( 2009 ), Ionospheres: Physics, Plasma Physics, and Chemistry, 2nd ed., Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceSinghal, R. P., and R. C. Whitten ( 1988 ), Thermal structure of the ionosphere of Mars: Simulations with one‐ and two‐dimensional models, Icarus, 74, 357 – 364, doi: 10.1016/0019-1035(88)90048-6.
dc.identifier.citedreferenceAcuña, M. H., et al. ( 1998 ), Magnetic field and plasma observations at Mars: Initial results of the Mars Global Surveyor mission, Science, 279, 1676 – 1680, doi: 10.1126/science.279.5357.1676.
dc.identifier.citedreferenceAllen, J. E. ( 1992 ), Probe theory – The orbital motion approach, Phys. Scr., 45, 497, doi: 10.1088/0031-8949/45/5/013.
dc.identifier.citedreferenceAndersson, L., R. E. Ergun, G. T. Delory, A. Eriksson, J. Westfall, H. Reed, J. McCauly, D. Summers, and D. Meyers ( 2015 ), The Langmuir Probe and Waves (LPW) Instrument for MAVEN, Space Sci. Rev., 195, 173 – 198, doi: 10.1007/s11214-015-0194-3.
dc.identifier.citedreferenceBanks, P. M., and A. F. Nagy ( 1970 ), Concerning the influence of elastic scattering upon photoelectron transport and escape, J. Geophys. Res., 75, 1902 – 1910, doi: 10.1029/JA075i010p01902.
dc.identifier.citedreferenceBanks, P. M., and G. Kockarts ( 1973 ), Aeronomy, Academic Press, New York.
dc.identifier.citedreferenceBougher, S. W. ( 2012 ), Coupled MGCM‐MTGCM Mars thermosphere simulations and resulting data products in support of the MAVEN mission, JPL/CDP Rep., pp. 1–9, 6 Aug.
dc.identifier.citedreferenceBougher, S. W., R. E. Dickinson, R. G. Robie, and E. C. Ridley ( 1988 ), Mars Thermospheric General Circulation Model: Calculations for the arrival of Phobos at Mars, Geophys. Res. Lett., 15, 1511 – 1514, doi: 10.1029/GL015i013p01511.
dc.identifier.citedreferenceBougher, S. W., S. Engel, R. G. Robie, and B. Foster ( 1999 ), Comparative terrestrial planet theremosphere 2. Solar cycle variation of global structure and winds at equinox, J. Geophys. Res., 104, 16,591 – 16,611, doi: 10.1029/1998JE001019.
dc.identifier.citedreferenceBougher, S. W., A. Valeille, M. R. Combi, and V. Tenishev ( 2009 ), Solar cycle and seasonal variability of the Martian thermosphere‐ionosphere and associated impacts upon atmospheric escape, SAE Int. J. Aerosp., 4 ( 1 ), 227 – 237, doi: 10.4271/2009-01-2396.
dc.identifier.citedreferenceBrace, L. H. ( 1998 ), Langmuir probe measurements in the ionosphere, in Measurement Techniques in Space Plasmas: Particles, Geophys. Monogr. Ser., vol. 102, edited by R. F. Pfaff, J. E. Borovsky, and D. T. Young, pp. 23 – 36, AGU, Washington, D. C.
dc.identifier.citedreferenceBrain, D. A., F. Bagenal, M. H. Acuña, and J. E. P. Connerney ( 2003 ), Martian magnetic morphology: Contributions from the solar wind and crust, J. Geophys. Res., 108 ( A12 ), 1424, doi: 10.1029/2002JA009482.
dc.identifier.citedreferenceBrain, D. A., et al. ( 2010 ), A comparison of global models for the solar wind interaction with Mars, Icarus, 206, 139 – 151, doi: 10.1016/j.icarus.2009.06.030.
dc.identifier.citedreferenceChamberlin, P. C., T. N. Woods, and F. G. Eparvier ( 2007 ), Flare Irradiance Spectral Model (FISM): Daily component algorithms and results, Space Weather, 5, S07005, doi: 10.1029/2007SW000316.
dc.identifier.citedreferenceChen, R. H., T. E. Cravens, and A. F. Nagy ( 1978 ), The Martian ionosphere in light of the Viking observations, J. Geophys. Res., 83, 3871 – 3876, doi: 10.1029/JA083iA08p03871.
dc.identifier.citedreferenceChoi, Y. W., J. Kim, K. W. Min, A. F. Nagy, and K. I. Oyama ( 1998 ), Effect of the magnetic field on the energetics of Mars ionosphere, Geophys. Res. Lett., 25, 2753 – 2756, doi: 10.1029/98GL51839.
dc.identifier.citedreferenceConnerney, J. E. P., J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliverson, and D. Sheppard ( 2015 ), The MAVEN magnetic field investigation, Space Sci. Rev., 195, 257 – 291, doi: 10.1007/s11214-015-0169-4.
dc.identifier.citedreferenceCravens, T. E. ( 1997 ), Physics of Solar System Plasmas, Cambridge Univ. Press, Cambridge, U. K.
dc.identifier.citedreferenceCravens, T. E., A. F. Nagy, L. H. Brace, R. H. Chen, and W. C. Knudsen ( 1979 ), The energetics of the ionosphere of Venus: A preliminary model based on Pioneer Venus observations, Geophys. Res. Lett., 6, 341 – 344, doi: 10.1029/GL006i005p00341.
dc.identifier.citedreferenceCravens, T. E., T. I. Gombosi, J. Kozyra, A. F. Nagy, L. H. Brace, and W. C. Knudsen ( 1980 ), Model calculations of the dayside ionosphere of Venus: Energetics, J. Geophys. Res., 85, 7778 – 7786, doi: 10.1029/JA085iA13p07778.
dc.identifier.citedreferenceEparvier, F. G., P. C. Chamberlin, T. N. Woods, and E. M. B. Thiemann ( 2015 ), The solar extreme ultraviolet monitor for MAVEN, Space Sci. Rev., 195, 293 – 301, doi: 10.1007/s11214-015-0195-2.
dc.identifier.citedreferenceErgun, R. E., M. W. Morooka, L. A. Andersson, C. M. Fowler, G. T. Delory, D. J. Andrews, A. I. Eriksson, T. McEnulty, and B. M. Jakosky ( 2015 ), Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument, Geophys. Res. Lett., 42, 8846 – 8853, doi: 10.1002/2015GL065280.
dc.identifier.citedreferenceFontenla, J. M., J. Harder, W. Livingston, M. Snow, and T. Woods ( 2011 ), High‐resolution solar spectral irradiance from extreme ultraviolet to far infrared, J. Geophys. Res., 116, D20108, doi: 10.1029/2011JD016032.
dc.identifier.citedreferenceFox, J. L., and A. B. Hać ( 2009 ), Photochemical escape of oxygen from Mars: A comparison of the exobase approximation to a Monte Carlo method, Icarus, 204, 527 – 544, doi: 10.1016/j.icarus.2009.07.005.
dc.identifier.citedreferenceFox, J. L., and A. Dalgarno ( 1979 ), Ionization, luminosity, and heating of the upper atmosphere of Mars, J. Geophys. Res., 84, 7315 – 7333, doi: 10.1029/JA084iA12p07315.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.