Show simple item record

Density variations in the Earth’s magnetospheric cusps

dc.contributor.authorWalsh, B. M.
dc.contributor.authorNiehof, J.
dc.contributor.authorCollier, M. R.
dc.contributor.authorWelling, D. T.
dc.contributor.authorSibeck, D. G.
dc.contributor.authorMozer, F. S.
dc.contributor.authorFritz, T. A.
dc.contributor.authorKuntz, K. D.
dc.date.accessioned2016-10-17T21:18:51Z
dc.date.available2017-05-02T15:09:13Zen
dc.date.issued2016-03
dc.identifier.citationWalsh, B. M.; Niehof, J.; Collier, M. R.; Welling, D. T.; Sibeck, D. G.; Mozer, F. S.; Fritz, T. A.; Kuntz, K. D. (2016). "Density variations in the Earth’s magnetospheric cusps." Journal of Geophysical Research: Space Physics 121(3): 2131-2142.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134187
dc.description.abstractSeven years of measurements from the Polar spacecraft are surveyed to monitor the variations of plasma density within the magnetospheric cusps. The spacecraft’s orbital precession from 1998 through 2005 allows for coverage of both the northern and southern cusps from low altitude out to the magnetopause. In the mid‐ and high‐ altitude cusps, plasma density scales well with the solar wind density (ncusp/nsw∼0.8). This trend is fairly steady for radial distances greater then 4 RE. At low altitudes (r < 4RE) the density increases with decreasing altitude and even exceeds the solar wind density due to contributions from the ionosphere. The density of high charge state oxygen (O>+2) also displays a positive trend with solar wind density within the cusp. A multifluid simulation with the Block‐Adaptive‐Tree Solar Wind Roe‐Type Upwind Scheme MHD model was run to monitor the relative contributions of the ionosphere and solar wind plasma within the cusp. The simulation provides similar results to the statistical measurements from Polar and confirms the presence of ionospheric plasma at low altitudes.Key PointsCusp electron density scales closely with the solar wind densityIonospheric contributions to the density in the cusp become dominant near four Earth radiiCusp high charge state oxygen density scales with solar wind density
dc.publisherKluwer Acad.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCusp
dc.titleDensity variations in the Earth’s magnetospheric cusps
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134187/1/jgra52459_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134187/2/jgra52459.pdf
dc.identifier.doi10.1002/2015JA022095
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceShelley, E. G., R. D. Sharp, and R. G. Johnson ( 1976 ), He ++ and H + flux measurements in the dayside cusp: Estimates of convection electric field, J. Geophys. Res., 81, 2363 – 2360.
dc.identifier.citedreferencePowell, K. G., P. L. Roe, T. J. Linde, T. I. Gombosi, and D. L. De Zeeuw ( 1999 ), A solution‐adaptive upwind scheme for ideal magnetohydrodynamics, J. Comput. Phys., 154, 284 – 309.
dc.identifier.citedreferenceReiff, P. H., T. W. Hill, and J. L. Burch ( 1977 ), Solar wind plasma injection at the dayside magnetospheric cusp, J. Geophys. Res., 82 ( 4 ), 479 – 491.
dc.identifier.citedreferenceRobertson, I. P., M. R. Collier, T. E. Cravens, and M.‐C. Fok ( 2006 ), X‐ray emission from the terrestrial magnetosheath including the cusps, J. Geophys. Res., 111, A12105, doi: 10.1029/2006JA011672.
dc.identifier.citedreferenceRosenbauer, H., H. Grunwaldt, M. D. Montgomery, G. Paschman, and N. Sckopke ( 1975 ), Heos 2 plasma observations in the distant polar magnetosphere: The plasma mantle, J. Geophys. Res., 80, 2723 – 2737.
dc.identifier.citedreferenceRussell, C. T., R. C. Snare, J. D. Means, D. Pierce, D. Dearborn, M. Larson, G. Barr, and G. Le ( 1995 ), The GGS/Polar magnetic fields investigation, Space Sci. Rev., 71, 563 – 582, doi: 10.1007/BF00751341.
dc.identifier.citedreferenceScudder, J. D., et al. ( 1995 ), Hydra—A 3‐dimensional electron and ion hot plasma instrument for the Polar spacecraft of the GGS mission, in The Global Geospace Mission, edited by C. Russell, pp. 459 – 495, Kluwer Acad., Norwell, Mass.
dc.identifier.citedreferenceSmith, M. F., and M. Lockwood ( 1990 ), The pulsating cusp, Geophys. Res. Lett., 17, 1069, doi: 10.1029/GL017i008p01069.
dc.identifier.citedreferenceSnowden, S. L., M. R. Collier, and K. D. Kuntz ( 2004 ), XMM‐Newton observation of solar wind charge exchange emission, Astrophys. J., 610, 1182 – 1190.
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive Numerical Algorithms in Space Weather Modeling, J. Comput. Phys., 231, 870 – 903.
dc.identifier.citedreferenceTrattner, K. J., A. J. Coates, A. N. Fazakerley, A. D. Johnstone, H. Balsiger, J. L. Burch, S. A. Fuselier, W. K. Peterson, H. Rosenbauer, and E. G. Shelley ( 1998 ), Overlapping ion populations in the cusp: Polar/TIMAS results, Geophys. Res. Lett., 20, 1621 – 1624, doi: 10.1029/98GL01060.
dc.identifier.citedreferenceTsyganenko, N. A. ( 2009 ), Magnetic field and electric currents in the vicinity of polar cusps as inferred from Polar and Cluster data, Ann. Geophys., 27, 1573 – 1582.
dc.identifier.citedreferenceWalsh, B. M., T. A. Fritz, N. M. Lender, J. Chen, and K. E. Whitaker ( 2007 ), Energetic particles observed by ISEE‐1 and ISEE‐2 in a cusp diamagnetic cavity on 29 September 1978, Ann. Geophys., 25, 1 – 8.
dc.identifier.citedreferenceWalsh, B. M., D. G. Sibeck, Y. Wang, and D. H. Fairfield ( 2012 ), Dawn‐dusk asymmetries in the Earth’s magnetosheath, J. Geophys. Res., 117, A12211, doi: 10.1029/2012JA018240.
dc.identifier.citedreferenceWargelin, B. J., M. Markevitch, M. Juda, V. Kharchenko, R. Edgar, and A. Dalgarno ( 2004 ), Chandra observations of the “dark” Moon and geocoronal solar wind charge exchange, Astophys. J., 607, 596 – 610, doi: 10.1086/383410.
dc.identifier.citedreferenceWelling, D. T., and M. W. Liemohn ( 2014 ), Outflow in global magnetohydrodynamics as a function of a passive inner boundary source, J. Geophys. Res. Space Physics, 119, 2691 – 2705, doi: 10.1002/2013JA019374.
dc.identifier.citedreferenceWelling, D. T., et al. ( 2015 ), The Earth: Plasma sources, losses, and transport processes, Space Sci. Rev., 192 ( 1–4 ), 145 – 208, doi: 10.1007/s11214‐015‐0187‐2.
dc.identifier.citedreferenceWilken, B., W. Weiss, D. Hall, M. Grande, F. Soraas, and J. F. Fennell ( 1992 ), Magnetospheric ion composition spectrometer onboard the CRRES spacecraft, J. Spacecr. Rockets, 29 ( 4 ), 585 – 591, doi: 10.2514/3.25503.
dc.identifier.citedreferenceWoch, J., and R. Lundin ( 1992 ), Magnetosheath plasma precipitation in the polar cusp and its control by the interplanetary magnetic field, J. Geophys. Res., 97 ( A2 ), 1421 – 1430, doi: 10.1029/91JA02487.
dc.identifier.citedreferenceYau, A. W., and M. André ( 1997 ), Sources of ion outfow in the high latitude ionosphere, Space Sci. Rev., 80, 1 – 25.
dc.identifier.citedreferenceZhang, B., O. Brambles, W. Lotko, W. Dunlap‐Shohl, R. Smith, M. Wiltberger, and J. Lyon ( 2013 ), Predicting the location of polar cusp in the Lyon‐Fedder‐Mobarry global magnetosphere simulation, J. Geophys. Res. Space Physics, 118, 6327 – 6337, doi: 10.1002/jgra.50565.1.
dc.identifier.citedreferenceZhou, X. W., C. T. Russell, G. Le, S. A. Fuselier, and J. D. Scudder ( 2001 ), Factors controlling the diamagnetic pressure in the polar cusp, Geophys. Res. Lett., 28, 915 – 918.
dc.identifier.citedreferenceGlocer, A., G. Tóth, Y. Ma, T. Gombosi, J.‐C. Zhang, and L. M. Kistler ( 2009 ), Multifluid Block‐Adaptive‐Tree Solar Wind Roe‐Type Upwind Scheme: Magnetospheric composition and dynamics during geomagnetic storms—Initial results, J. Geophys. Res., 114 ( A12 ), A12203, doi: 10.1029/2009JA014418.
dc.identifier.citedreferenceAdamson, E., A. Otto, and K. Nykyri ( 2011 ), 3‐D mesoscale MHD simulations of a cusp‐like magnetic configuration: Method and first results, Ann. Geophys., 29, 759 – 770.
dc.identifier.citedreferenceAndré, M., and A. Yau ( 1997 ), Theories and observations of ion energization and outflow in the high latitude magnetosphere, Space Sci. Rev., 80, 27 – 48.
dc.identifier.citedreferenceAparicio, B., B. Thelin, and R. Lundin ( 1991 ), The polar cusp from a particle point of view: A statistical study based on Viking data, J. Geophys. Res., 96, 14,023 – 14,031.
dc.identifier.citedreferenceCarter, J. A., S. Sembay, and A. M. Read ( 2011 ), Identifying XMM‐Newton observations affected by solar wind charge exchange: Part II, Astron. Astrophys., 527, A115, doi: 10.1051/0004‐6361/201015817.
dc.identifier.citedreferenceCollier, M. R., J. A. Slavin, R. P. Lepping, A. Szabo, and K. Ogilvie ( 1998 ), Timing accuracy for the simple planar propagation of magnetic field structures in the solar wind, Geophys. Res. Lett., 25, 2509 – 2512, doi: 10.1029/98GL00735.
dc.identifier.citedreferenceCollier, M. R., et al. ( 2014 ), On lunar exospheric column densities and solar wind access beyond the terminator from ROSAT soft X‐ray observations of solar wind charge exchange, J. Geophys. Res. Planets, 119, 1459 – 1478, doi: 10.1002/2014JE004628.
dc.identifier.citedreferenceCravens, T. E. ( 1997 ), Comet Hyakutake X‐ray source: Charge transfer of solar wind heavy ions, Geophys. Res. Lett., 24, 105 – 108.
dc.identifier.citedreferenceCravens, T. E., I. P. Robertson, and S. L. Snowden ( 2001 ), Temporal variations of geocoronal and heliospheric X‐ray emission associated with the solar wind interaction with neutrals, J. Geophys. Res., 106 ( A11 ), 24,883 – 24,892, doi: 10.1029/2000JA000461.
dc.identifier.citedreferenceDennerl, K. ( 2002 ), Discovery of X‐rays from Mars with Chandra, Astron. Astrophys., 394, 1119 – 1128, doi: 10.1051/0004‐6361:20021116.
dc.identifier.citedreferenceDennerl, K., V. Burwitz, J. Englhauser, C. Lisse, and S. Wolk ( 2002 ), Discovery of X‐rays from Venus with Chandra, Astron. Astrophys., 386, 319 – 330, doi: 10.1051/0004‐6361:20020097.
dc.identifier.citedreferenceDimmock, A. P., and K. Nykyri ( 2013 ), The statistical mapping of magnetosheath plasma properties based on THEMIS measurements in the magnetosheath interplanetary medium reference frame, J. Geophys. Res. Space Physics, 118, 4963 – 4976, doi: 10.1002/jgra.50465.
dc.identifier.citedreferenceEscoubet, C. P., M. F. Smith, S. F. Fung, P. C. Anderson, R. A. Hoffman, E. M. Baasinska, and J. M. Bosqued ( 1992 ), Staircase ion signature in the polar cusp: A case study, Geophys. Res. Lett., 19, 1735 – 1738, doi: 10.1029/92GL01806.
dc.identifier.citedreferenceEscoubet, C. P., et al. ( 2008 ), Effect of a northward turning of the interplanetary magnetic field on cusp precipitation as observed by Cluster, J. Geophys. Res., 113, A07S13, doi: 10.1029/2007JA012771.
dc.identifier.citedreferenceFarrell, W. M., and J. A. Van Allen ( 1990 ), Observations of the Earth’s polar cleft at large radial distances with the Hawkeye 1 magnetometer, J. Geophys. Res., 95, 20,945 – 20,958.
dc.identifier.citedreferenceFrank, L. A. ( 1971 ), Plasma in the Earth’s polar magnetosphere, J. Geophys. Res., 76 ( 22 ), 5202 – 5219.
dc.identifier.citedreferenceFritz, T. A., J. Chen, and G. L. Siscoe ( 2003 ), Energetic ions, large diamagnetic cavities, and Chapman‐Ferraro cusp, J. Geophys. Res., 108 ( A1 ), 1028, doi: 10.1029/2002JA009476.
dc.identifier.citedreferenceFujimoto, M., K. Mitsuda, D. McCamman, Y. Takei, M. Bauer, Y. Ishisaki, F. S. Porter, H. Yamaguchi, K. Hayashida, and N. Yamasaki ( 2007 ), Evidence for solar‐wind charge‐exchange X‐ray emission from the Earth’s magnetosheath, Publ. Astron. Soc. Jpn., 59, S133 – S140.
dc.identifier.citedreferenceHaerendel, G., G. Paschmann, N. Sckopke, H. Rosenbauer, and P. C. Hedgecock ( 1978 ), The frontside boundary layer of the magnetosphere and the problem of reconnection, J. Geophys. Res., 83 ( A7 ), 3195 – 3216, doi: 10.1029/JA083iA07p03195.
dc.identifier.citedreferenceHarvey, P., et al. ( 1995 ), The GGS/Polar magnetic fields investigation, in The Global Geospace Mission, edited by C. Russell, pp. 583 – 596, Kluwer Acad., Norwell, Mass.
dc.identifier.citedreferenceHeikkila, W. J., and J. D. Winningham ( 1971 ), Penetration of magnetosheath plasma to low altitudes through the dayside magnetospheric cusps, J. Geophys. Res., 76, 883 – 891, doi: 10.1029/JA076i004p00883.
dc.identifier.citedreferenceKing, J. H., and N. E. Papitashvili ( 2005 ), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.
dc.identifier.citedreferenceKremser, G., J. Woch, K. Mursula, P. Tanskanen, B. Wilken, and R. Lundin ( 1995 ), Origin of energetic ions in the polar cusp inferred from ion composition measurements by the Viking satellite, Ann. Geophys., 13, 595 – 607, doi: 10.1007/s00585‐995‐0595‐9.
dc.identifier.citedreferenceKuntz, K. D., et al. ( 2015 ), The solar wind charge‐exchange production factor for hydrogen, Astophys. J., 808, 143, doi: 10.1088/0004‐637X/808/2/143.
dc.identifier.citedreferenceLavraud, B., A. Fedorov, E. Budnik, A. Grigoriev, P. J. Cargill, M. W. Dunlop, H. Rème, I. Dandouras, and A. Balogh ( 2004 ), Cluster survey of the high‐altitude cusp properties: A three‐year statistical study, Ann. Geophys., 22, 3009 – 3019.
dc.identifier.citedreferenceLockwood, M. ( 1995 ), Overlapping cusp ion injections: An explanation invoking magnetopause reconnection, Geophys. Res. Lett., 22, 1141 – 1144.
dc.identifier.citedreferenceLockwood, M., and M. F. Smith ( 1994 ), Low and middle altitude cusp particle signatures for general magnetopause reconnection rate variations: 1. Theory, J. Geophys. Res., 99, 8531 – 8553, doi: 10.1029/JA093iA12p14549.
dc.identifier.citedreferenceLyons, L. R., and D. J. Williams ( 1984 ), Quantitative Aspects of Magnetospheric Physics, D. Reidel, Dordrecht, Netherlands.
dc.identifier.citedreferenceerka, J., J. Šafrànkovà, and Z. Němeček ( 2002 ), Cusp‐like plasma in high altitudes: A statistical study of the width and location of the cusp from Magion‐4, Ann. Geophys., 20, 311 – 320.
dc.identifier.citedreferenceMorley, S., D. Welling, J. Koller, B. A. Larsen, M. G. Henderson, and J. Niehof ( 2011 ), SpacePy—A Python‐based library of tools for the space sciences, in Proceeding of the 9th Python in Science Conference, edited by S. van der Walt and J. Millman, pp. 39 – 45, Austin, Tex.
dc.identifier.citedreferenceNewell, P. T., and C.‐I. Meng ( 1991 ), Ion acceleration at the equatorward edge of the cusp: Low‐altitude observations of patchy merging, Geophys. Res. Lett., 18, 1829 – 1832.
dc.identifier.citedreferenceNewell, P. T., and C. T. Meng ( 1992 ), Mapping the dayside ionosphere to the magnetosphere according to particle precipitation characteristics, Geophys. Res. Lett., 19, 609 – 612, doi: 10.1029/92GL00404.
dc.identifier.citedreferenceNewell, P. T., and C. T. Meng ( 1988 ), The cusp and the cleft/LLBL: Low‐altitude identification and statistical local time variation, J. Geophys. Res., 93, 14,549 – 14,556, doi: 10.1029/JA093iA12p14549.
dc.identifier.citedreferenceNiehof, J. T., T. A. Fritz, R. H. W. Friedel, and J. Chen ( 2010 ), Size and location of cusp diamagnetic cavities observed by Polar, J. Geophys. Res., 115, A07201, doi: 10.1029/2009JA014827.
dc.identifier.citedreferencePalmroth, M., H. Laakso, and T. I. Pulkkinen ( 2001 ), Location of high‐altitude cusp during steady solar wind conditions, J. Geophys. Res., 106, 21,109 – 21,122, doi: 10.1029/2001JA900073.
dc.identifier.citedreferencePerry, C. H., M. Grande, T. H. Zurbuchen, S. Hefti, G. Gloeckler, J. F. Fennell, B. Wilken, and T. A. Fritz ( 2000 ), Use of Fe charge state changes as a tracer for solar wind entry to the magnetosphere, Geophys. Res. Lett., 13, 2441 – 2444, doi: 10.1029/2000GL003780.
dc.identifier.citedreferencePitout, F., C. P. Escoubet, B. Klecker, and I. Dandouras ( 2009 ), Cluster survey of the mid‐altitude cusp—Part 2: Large‐scale morphology, Ann. Geophys., 27, 1873 – 1886, doi: 10.5194/angeo‐27‐1875‐2009.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.