Show simple item record

Perchlorate formation on Mars through surface radiolysis‐initiated atmospheric chemistry: A potential mechanism

dc.contributor.authorWilson, Eric H.
dc.contributor.authorAtreya, Sushil K.
dc.contributor.authorKaiser, Ralf I.
dc.contributor.authorMahaffy, Paul R.
dc.date.accessioned2016-10-17T21:19:02Z
dc.date.available2017-10-05T14:33:49Zen
dc.date.issued2016-08
dc.identifier.citationWilson, Eric H.; Atreya, Sushil K.; Kaiser, Ralf I.; Mahaffy, Paul R. (2016). "Perchlorate formation on Mars through surface radiolysis‐initiated atmospheric chemistry: A potential mechanism." Journal of Geophysical Research: Planets 121(8): 1472-1487.
dc.identifier.issn2169-9097
dc.identifier.issn2169-9100
dc.identifier.urihttps://hdl.handle.net/2027.42/134196
dc.description.abstractRecent observations of the Martian surface by the Phoenix lander and the Sample Analysis at Mars indicate the presence of perchlorate (ClO4–). The abundance and isotopic composition of these perchlorates suggest that the mechanisms responsible for their formation in the Martian environment may be unique in our solar system. With this in mind, we propose a potential mechanism for the production of Martian perchlorate: the radiolysis of the Martian surface by galactic cosmic rays, followed by the sublimation of chlorine oxides into the atmosphere and their subsequent synthesis to form perchloric acid (HClO4) in the atmosphere, and the surface deposition and subsequent mineralization of HClO4 in the regolith to form surface perchlorates. To evaluate the viability of this mechanism, we employ a one‐dimensional chemical model, examining chlorine chemistry in the context of Martian atmospheric chemistry. Considering the chlorine oxide, OClO, we find that an OClO flux as low as 3.2 × 107 molecules cm–2 s–1 sublimated into the atmosphere from the surface could produce sufficient HClO4 to explain the perchlorate concentration on Mars, assuming an accumulation depth of 30 cm and integrated over the Amazonian period. Radiolysis provides an efficient pathway for the oxidation of chlorine, bypassing the efficient Cl/HCl recycling mechanism that characterizes HClO4 formation mechanisms proposed for the Earth but not Mars.Key PointsMechanism initiated by radiolysis in the surface can potentially account for observed Martian perchlorate concentrationsInjection of oxides of chlorine from the surface into the atmosphere is potentially an effective way of forming perchloric acidMartian perchlorate is an important oxidant but poorly characterized
dc.publisherWiley‐Interscience
dc.subject.otherchlorine chemistry
dc.subject.otherMars
dc.subject.othersurface‐atmosphere interactions
dc.subject.otherradiolysis
dc.titlePerchlorate formation on Mars through surface radiolysis‐initiated atmospheric chemistry: A potential mechanism
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134196/1/jgre20553.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134196/2/jgre20553_am.pdf
dc.identifier.doi10.1002/2016JE005078
dc.identifier.sourceJournal of Geophysical Research: Planets
dc.identifier.citedreferenceSamson, J. A. R., and R. B. Cairns ( 1964 ), Absorption and photoionization cross sections of O 2 and N 2 at intense solar emission lines, J. Geophys. Res., 69, 4583 – 4590, doi: 10.1029/JZ069i021p04583.
dc.identifier.citedreferenceSmith, M. L., M. W. Claire, D. C. Catling, and K. J. Zahnle ( 2014 ), The formation of sulfate, nitrate, and perchlorate salts in the Martian atmosphere, Icarus, 231, 51 – 64, doi: 10.1016/j.icarus.2013.11.031.
dc.identifier.citedreferenceStern, J. C., B. Sutter, W. A. Jackson, R. Navarro‐González, C. P. McKay, D. W. Ming, and P. R. Mahaffy ( 2016 ), The nitrate/perchlorate ratio from Martian sedimentary rocks: Clues to the nitrogen cycle?, Abstract presented at 26th Goldschmidt Conference.
dc.identifier.citedreferenceSuto, M., X. Wang, and L. C. Lee ( 1986 ), Fluorescence from VUV excitation of formaldehyde, J. Chem. Phys., 85 ( 8 ), 4228 – 4233, doi: 10.1063/1.451793.
dc.identifier.citedreferenceSutter, B., et al. ( 2016 ), Oxychlorine detections on Mars: Implications for Cl cycling, Abstract presented at 26th Goldschmidt Conference.
dc.identifier.citedreferenceThompson, B. A., P. Hartreck, and R. R. Reeves Jr. ( 1963 ), Ultraviolet absorption coefficients of CO 2, CO, O 2, H 2 O, N 2 O, NH 3, NO, SO 2, and CH 4, between 1850 and 4000 Å, J. Geophys. Res., 68, 6431 – 6436, doi: 10.1029/JZ068i024p06431.
dc.identifier.citedreferenceToner, J. D., D. C. Catling, and B. Light ( 2015 ), Modeling salt precipitation from brines on Mars: Evaporation versus freezing origin for soil salts, Icarus, 250, 451 – 461, doi: 10.1016/j.icarus.2014.12.013.
dc.identifier.citedreferenceTsang, W., and R. F. Hampson ( 1986 ), Chemical kinetic data base for combustion chemistry. Part I. Methane and related compounds, J. Phys. Chem. Ref. Data, 15 ( 3 ), 1087 – 1279.
dc.identifier.citedreferenceTurner, A. M., M. J. Abplanalp, and R. I. Kaiser ( 2016 ), Mechanistic studies on the radiolytic decomposition of perchlorates on the Martian surface, Astrophys. J., 820 ( 2 ), 127, doi: 10.3847/0004-637X/820/2/127.
dc.identifier.citedreferenceWatanabe, K., and A. S. Jursa ( 1964 ), Absorption and photoionization cross sections of H 2 O and H 2 S, J. Chem. Phys., 41 ( 6 ), 1650, doi: 10.1063/1.1726138.
dc.identifier.citedreferenceWatanabe, K., M. Zelikoff, and E. C. Y. Inn ( 1953 ), Absorption coefficients of several atmospheric gases, AFCRC Tech. Rep. 53, pp. 23.
dc.identifier.citedreferenceWatanabe, K., F. M. Matsunaga, and H. Sakai ( 1967 ), Absorption coefficient and photoionization yield of NO in the region 580‐1350 Å, Appl. Opt., 6 ( 3 ), 391 – 396, doi: 10.1364/AO.6.000391.
dc.identifier.citedreferenceWight, G. R., M. J. Van der Wiel, and C. E. Brion ( 1976 ), Dipole excitation, ionization and fragmentation of N 2 and CO in the 10‐60 eV region, J. Phys. B, 9 ( 4 ), 675 – 689, doi: 10.1088/0022-3700/9/4/017.
dc.identifier.citedreferenceWong, A. S., S. K. Atreya, and T. Encrenaz ( 2003 ), Chemical markers of possible hot spots on Mars, J. Geophys. Res., 108 ( E4 ), 5026, doi: 10.1029/2002JE002003.
dc.identifier.citedreferenceWordsworth, R., F. Forget, E. Millour, J. W. Head, J.‐B. Madeleine, and B. Charnay ( 2013 ), Global modeling of the early Martian climate under a denser CO atmosphere: Water cycle and ice evolution, Icarus, 222 ( 1 ), 1 – 19, doi: 10.1016/j.icarus.2012.09.036.
dc.identifier.citedreferenceXu, Z. F., and M. C. Lin ( 2003 ), Ab initio studies of ClO x reactions. IX. Combination and disproportionation reactions of ClO and s‐ClO 3 radicals, J. Chem. Phys., 119 ( 17 ), 8897 – 8904, doi: 10.1063/1.1613632.
dc.identifier.citedreferenceYung, Y. L., and W. B. Demore ( 1999 ), Photochemistry of Planetary Atmospheres, Oxford Univ. Press, New York.
dc.identifier.citedreferenceZelikoff, M., K. Watanabe, and E. C. Y. Inn ( 1953 ), Absorption coefficients of gases in the vacuum ultraviolet. Part II. Nitrous oxide, J. Chem. Phys., 21 ( 10 ), 1643 – 1647, doi: 10.1063/1.1698636.
dc.identifier.citedreferenceZent, A. P. ( 1998 ), On the thickness of the oxidized layer of the Martian regolith, J. Geophys. Res., 103, 31,491 – 31,498, doi: 10.1029/98JE01895.
dc.identifier.citedreferenceZhu, R. S., and M. C. Lin ( 2001 ), Ab initio study of ammonium perchlorate combustion initiation processes: Unimolecule decomposition of perchloric acid and the related OH + ClO 3 reaction, PhysChemComm, 25, 1 – 6.
dc.identifier.citedreferenceZhu, R. S., and M. C. Lin ( 2003 ), Ab initio studies of ClOx reactions. VIII. Isomerization and decomposition of ClO 2 radicals and related bimolecular processes, J. Chem. Phys., 119 ( 4 ), 2075 – 2082, doi: 10.1063/1.1585027.
dc.identifier.citedreferenceZipf, E. C., and R. W. McLaughlin ( 1978 ), On the dissociation of nitrogen by electron impact and by EUV photo‐absorption, Planet. Space Sci., 26 ( 5 ), 449 – 462, doi: 10.1016/0032-0633(78)90066-1.
dc.identifier.citedreferenceAllison, T. C., G. C. Lynch, D. G. Truhlar, and M. S. Gordon ( 1996 ), An improved potential energy surface for the H 2 Cl system and its use for calculations of rate coefficients and kinetic isotope effects, J. Phys. Chem., 100 ( 32 ), 13,575 – 13,587, doi: 10.1021/jp960781j.
dc.identifier.citedreferenceAnicich, V. G., and W. T. Huntress ( 1986 ), A survey of bimolecular ion‐molecule reactions for use in modeling the chemistry of planetary atmospheres, cometary comae, and interstellar clouds, Astrophys. J. Suppl. Ser., 62 ( 3 ), 553 – 672, doi: 10.1086/191151.
dc.identifier.citedreferenceArcher, P. D., et al. ( 2014 ), Abundances and implications of volatile‐bearing species from evolved gas analysis of the Rocknest aeolian deposit, Gale Crater, Mars, J. Geophys. Res. Planets, 119, 237 – 254, doi: 10.1002/2013JE004493.
dc.identifier.citedreferenceArcher, P. D., et al. ( 2015 ), Oxychlorine species on Mars: The Gale Crater story, paper presented at 46th Lunar and Planetary Science Conference, The Woodlands, Tex.
dc.identifier.citedreferenceArmstrong, J. C., C. B. Leovy, and T. Quinn ( 2004 ), A 1 Gyr climate model for Mars: New orbital statistics and the importance of seasonally resolved polar processes, Icarus, 171 ( 2 ), 255 – 271, doi: 10.1016/j.icarus.2004.05.007.
dc.identifier.citedreferenceAtkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, and J. Troe ( 1989 ), Evaluated kinetic and photochemical data for atmospheric chemistry—Supplement III, Int. J. Chem. Kinet., 21 ( 2 ), 115 – 150, doi: 10.1002/kin.550210205.
dc.identifier.citedreferenceAtkinson, R., D. L. Baulch, R. A. Cox, R. F. Hampson, J. A. Kerr, M. J. Rossi, and J. Troe ( 1997 ), Evaluated kinetic, photochemical and heterogeneous data for atmospheric chemistry: Supplement V, IUPAC subcommittee on gas kinetic data evaluation for atmospheric chemistry, J. Phys. Chem. Ref. Data, 26 ( 3 ), 521 – 1011.
dc.identifier.citedreferenceAtkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe ( 2004 ), Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—Gas phase reaction of O x, HO x, NO x and SO x species, Atmos. Chem. Phys., 4, 1461 – 1738.
dc.identifier.citedreferenceAtkinson, R., D. L. Baulch, R. A. Cox, J. N. Crowley, R. F. Hampson, R. G. Hynes, M. E. Jenkin, M. J. Rossi, and J. Troe ( 2007 ), Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III—Gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981 – 1191.
dc.identifier.citedreferenceAtreya, S. K., and Z. G. Gu ( 1994 ), Stability of the Martian atmosphere—Is heterogeneous catalysis essential?, J. Geophys. Res., 99, 13,133 – 13,145, doi: 10.1029/94JE01085.
dc.identifier.citedreferenceBarnett, A. J., G. Marston, and R. P. Wayne ( 1987 ), Kinetics and chemiluminescence in the reaction of N atoms with O 2 and O 3, J. Chem. Soc. Faraday Trans. 2, 83, 1453 – 1463, doi: 10.1039/f29878301453.
dc.identifier.citedreferenceBaulch, D. L., J. Duxbury, S. J. Grant, and D. C. Montague ( 1981 ), Evaluated kinetic data for high‐temperature reactions. Vol.4—Homogeneous gas‐phase reactions of halogen‐containing and cyanide‐containing species, J. Phys. Chem. Ref. Data, 10, 1 – 721.
dc.identifier.citedreferenceBaulch, D. L., et al. ( 1992 ), Evaluated kinetic data for combustion modeling, J. Phys. Chem. Ref. Data, 21 ( 6 ), 411 – 429.
dc.identifier.citedreferenceBaulch, D. L., et al. ( 1994 ), Evaluated kinetic data for combustion modeling. Supplement I, J. Phys. Chem. Ref. Data, 23 ( 6 ), 847 – 1033.
dc.identifier.citedreferenceBiemann, K., and J. L. Bada ( 2011 ), Comment on “Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars” by Rafael Navarro‐González et al., J. Geophys. Res., 116, E12001, doi: 10.1029/2011JE003869.
dc.identifier.citedreferenceBiemann, K., et al. ( 1977 ), The search for organic substances and inorganic volatile compounds in the surface of Mars, J. Geophys. Res., 82, 4641 – 4658, doi: 10.1029/JS082i028p04641.
dc.identifier.citedreferenceBoodaghians, R. B., C. E. Canosa‐Mas, P. J. Carpenter, and R. P. Wayne ( 1988 ), The reactions of NO 3 with OH and H, J. Chem. Soc. Faraday Trans. 2, 84, 931 – 948, doi: 10.1039/f29888400931.
dc.identifier.citedreferenceBrune, W. H., J. J. Schwab, and J. G. Anderson ( 1983 ), Laser magnetic‐resonance, resonance fluorescence, and resonance absorption studies of the reaction‐kinetics of O + OH → H + O 2, O + HO 2  → OH + O 2, N + OH → H + NO, and N + HO 2  → products at 300 K between 1 and 5 torr, J. Phys. Chem., 87 ( 22 ), 4503 – 4514, doi: 10.1021/j100245a034.
dc.identifier.citedreferenceCarrier, B. L., and S. P. Kounaves ( 2015 ), The origins of perchlorate in the Martian soil, Geophys. Res. Lett., 42, 3739 – 3745, doi: 10.1002/2015GL064290.
dc.identifier.citedreferenceCatling, D. C., M. W. Claire, K. J. Zahnle, R. C. Quinn, B. C. Clark, M. H. Hecht, and S. Kounaves ( 2010 ), Atmospheric origins of perchlorate on Mars and in the Atacama, J. Geophys. Res., 115, E00E11, doi: 10.1029/2009JE003425.
dc.identifier.citedreferenceChan, W. F., G. Cooper, R. N. S. Sodhi, and C. E. Brion ( 1993 ), Absolute optical oscillator strengths for discrete and continuum photoabsorption of molecular nitrogen (11‐200 eV), Chem. Phys., 170 ( 1 ), 81 – 97, doi: 10.1016/0301-0104(93)80095-Q.
dc.identifier.citedreferenceChichinin, A. I. ( 2000 ), Isotope effects in the deactivation of O( 1 D) atoms by XCl and XF (X = H,D), Chem. Phys. Lett., 316 ( 5–6 ), 425 – 432, doi: 10.1016/S0009-2614(99)01325-1.
dc.identifier.citedreferenceChristensen, L. E., M. Okumura, S. P. Sander, R. J. Salawitch, G. C. Toon, B. Sen, J. F. Blavier, and K. W. Jucks ( 2002 ), Kinetics of HO 2  + HO 2  → H 2 O 2  + O 2: Implications for stratospheric H 2 O 2, Geophys. Res. Lett., 29 ( 9 ), 1299, doi: 10.1029/2001GL014525.
dc.identifier.citedreferenceColussi, A. J., S. P. Sander, and R. R. Friedl ( 1992 ), Temperature dependence and mechanism of the reaction between O( 3 P) and chlorine dioxide, J. Phys. Chem., 96 ( 11 ), 4442 – 4445, doi: 10.1021/j100190a058.
dc.identifier.citedreferenceCraddock, R. A., and R. Greeley ( 2009 ), Minimum estimates of the amount and timing of gases released into the Martian atmosphere from volcanic eruptions, Icarus, 204 ( 2 ), 512 – 526, doi: 10.1016/j.icarus.2009.07.026.
dc.identifier.citedreferenceCull, S. C., R. E. Arvidson, J. G. Catalano, D. W. Ming, R. V. Morris, M. T. Mellon, and M. Lemmon ( 2010 ), Concentrated perchlorate at the Mars Phoenix landing site: Evidence for thin film liquid water on Mars, Geophys. Res. Lett., 37, L22203, doi: 10.1029/2010GL045269.
dc.identifier.citedreferenceDasgupta, P. K., P. K. Martinelango, W. A. Jackson, T. A. Anderson, K. Tian, R. W. Tock, and S. Rajagopalan ( 2005 ), The origin of naturally occurring perchlorate: The role of atmospheric processes, Environ. Sci. Technol., 39 ( 6 ), 1569 – 1575, doi: 10.1021/es048612x.
dc.identifier.citedreferenceDeMore, W. B., S. P. Sander, D. M. Golden, R. F. Hampson, M. J. Kurylo, C. J. Howard, A. R. Ravishankara, C. E. Kolb, and M. J. Molina ( 1997 ), JPL Publication 97‐4.
dc.identifier.citedreferenceDu, M. L., and A. Dalgarno ( 1990 ), The radiative association of N and O atoms, J. Geophys. Res., 95, 12,265 – 12,268, doi: 10.1029/JA095iA08p12265.
dc.identifier.citedreferenceEricksen, G. E. ( 1983 ), The Chilean nitrate deposits, Am. Sci., 71 ( 4 ), 366 – 374.
dc.identifier.citedreferenceFarley, K. A., et al. ( 2016 ), Light and variable 37 Cl/ 35 Cl ratios in rocks from Gale Crater, Mars: Possible signature of perchlorate, Earth Planet. Sci. Lett., 438, 14 – 24, doi: 10.1016/j.epsl.2015.12.013.
dc.identifier.citedreferenceFell, C., J. I. Steinfeld, and S. Miller ( 1990 ), Quenching of N( 2 D) by O( 3 P), J. Chem. Phys., 92 ( 8 ), 4768 – 4777, doi: 10.1063/1.457694.
dc.identifier.citedreferenceFennelly, J. A., and D. G. Torr ( 1992 ), Photoionization and photoabsorption cross sections of O, N 2, O 2, and N for aeronomic calculations, At. Data Nucl. Data Tables, 51 ( 2 ), 321 – 363, doi: 10.1016/0092-640X(92)90004-2.
dc.identifier.citedreferenceFox, J. L., and A. Dalgarno ( 1979 ), Ionization, luminosity, and heating of the upper atmosphere of Mars, J. Geophys. Res., 84, 7315 – 7333, doi: 10.1029/JA084iA12p07315.
dc.identifier.citedreferenceFranz, H. B., M. G. Trainer, M. H. Wong, P. R. Mahaffy, S. K. Atreya, H. L. K. Manning, and J. C. Stern ( 2015 ), Reevaluated Martian atmospheric mixing ratios from the mass spectrometer on the Curiosity rover, Planet. Space Sci., 109–110, 154 – 158, doi: 10.1016/j.pss.2015.02.014.
dc.identifier.citedreferenceGallagher, C., M. R. Balme, S. J. Conway, and P. M. Grindrod ( 2011 ), Sorted clastic stripes, lobes and associated gullies in high‐latitude craters on Mars: Landforms indicative of very recent, polycyclic ground‐ice thaw and liquid flows, Icarus, 211, 458 – 471.
dc.identifier.citedreferenceGallagher, J. W., C. E. Brion, J. A. R. Samson, and P. W. Langhoff ( 1988 ), Absolute cross sections for molecular photoabsorption, partial photoionization, and ionic photofragmentation processes, J. Phys. Chem. Ref. Data, 17 ( 1 ), 9 – 153.
dc.identifier.citedreferenceGentieu, E. P., and J. E. Mentall ( 1970 ), Formaldehyde absorption coefficients in vacuum ultraviolet (650 to 1850 angstroms), Science, 169 ( 3946 ), 681, doi: 10.1126/science.169.3946.681.
dc.identifier.citedreferenceGerlach‐Meyer, U., E. Linnebach, K. Kleinermanns, and J. Wolfrum ( 1987 ), H‐atom photofragments from H 2 O 2 dissociated at 193 nm, Chem. Phys. Lett., 133 ( 2 ), 113 – 115, doi: 10.1016/0009-2614(87)87031-8.
dc.identifier.citedreferenceGhosh, B., D. K. Papnastasiou, R. K. Talukdar, J. M. Roberts, and J. B. Burkholder ( 2012 ), Nitryl chloride (ClNO 2 ): UV/Vis absorption spectrum between 210 and 296 K and O( 3 P) quantum yield at 193 and 248 nm, J. Phys. Chem., 116 ( 24 ), 5796 – 5805, doi: 10.1021/jp207389y.
dc.identifier.citedreferenceGlavin, D. P., et al. ( 2013 ), Evidence for perchlorates and the origin of chlorinated hydrocarbons detected by SAM at the Rocknest Aeolian deposit in Gale Crater, J. Geophys. Res. Planets, 118, 1955 – 1973, doi: 10.1002/jgre.20144.
dc.identifier.citedreferenceGlicker, S., and L. J. Stief ( 1971 ), Photolysis of formaldehyde at 1470 and 1236 Å, J. Chem. Phys., 54 ( 7 ), 2852, doi: 10.1063/1.1675264.
dc.identifier.citedreferenceGóbi, S., M. J. Abplanalp, and R. I. Kaiser ( 2016 ), Effect of perchlorates on electron radiolysis of glycine with application to Mars, Astrophys. J., 822 ( 1 ), 8, doi: 10.3847/0004-637X/822/1/8.
dc.identifier.citedreferenceGrothe, H., and H. Willner ( 1994 ), Chlorine trioxide—Spectroscopic properties, molecular structure, and photochemical behavior, Angew. Chem. Eng., 33 ( 14 ), 1482 – 1484, doi: 10.1002/anie.199414821.
dc.identifier.citedreferenceHaberle, R. M., J. R. Murphy, and J. Schaeffer ( 2003 ), Orbital change experiments with a Mars general circulation model, Icarus, 161, 66 – 89, doi: 10.1016/S0019-1035(02)00017-9.
dc.identifier.citedreferenceHaddad, G. N., and J. A. R. Samson ( 1986 ), Total absorption and photoionization cross sections of water vapor between 100 and 1000 Å, J. Chem. Phys., 84 ( 12 ), 6623 – 6626, doi: 10.1063/1.450715.
dc.identifier.citedreferenceHecht, M. H., et al. ( 2009 ), Detection of perchlorate and the soluble chemistry of Martian soil at the Phoenix lander site, Science, 325 ( 5936 ), 64 – 67, doi: 10.1126/science.1172466.
dc.identifier.citedreferenceHerron, J. T. ( 1999 ), Evaluated chemical kinetics data for reactions of N( 2 D), N( 2 P), and N 2 (A 3 Σ u + ) in the gas phase, J. Phys. Chem. Ref. Data, 28 ( 5 ), 1453 – 1483, doi: 10.1063/1.556043.
dc.identifier.citedreferenceHochanadel, C. J., T. J. Sworski, and P. J. Ogren ( 1980 ), Ultraviolet spectrum and reaction kinetics of the formyl radical, J. Phys. Chem., 84 ( 3 ), 231 – 235, doi: 10.1021/j100440a001.
dc.identifier.citedreferenceIngham, T., S. P. Sander, and R. R. Friedl ( 2005 ), Kinetics and product studies of the reaction of Br, Cl, and NO with ClOOCl using discharge‐flow mass spectrometry, Faraday Discuss., 130, 89 – 110, doi: 10.1039/b500179j.
dc.identifier.citedreferenceJackson, W. A., et al. ( 2015a ), Global patterns and environmental controls of perchlorate and nitrate co‐occurrence in arid and semi‐arid environments, Geochim. Cosmochim. Acta, 164, 502 – 522, doi: 10.1016/j.gca.2015.05.016.
dc.identifier.citedreferenceJackson, W. A., A. F. Davila, D. W. G. Sears, J. D. Coates, C. P. McKay, M. Brundrett, N. Estrada, and J. K. Böhlke ( 2015b ), Widespread occurrence of (per)chlorate in the solar system, Earth Planet. Sci. Lett., 430, 470 – 476, doi: 10.1016/j.epsl.2015.09.003.
dc.identifier.citedreferenceKeller, J. M., et al. ( 2006 ), Equatorial and midlatitude distribution of chlorine measured by Mars Odyssey GRS, J. Geophys. Res., 111, E03S08, doi: 10.1029/2006JE002679.
dc.identifier.citedreferenceKim, Y. S., K. P. Wo, S. Maity, S. K. Atreya, and R. I. Kaiser ( 2013 ), Radiation‐induced formation of chlorine oxides and their potential role in the origin of Martian perchlorates, J. Am. Chem. Soc., 135 ( 13 ), 4910 – 4913, doi: 10.1021/ja3122922.
dc.identifier.citedreferenceKopitzky, R., H. Grothe, and H. Willner ( 2002 ), Chlorine oxide radicals ClOx (x = 1‐4) studied by matrix isolation spectroscopy, Chem. Eur. J., 8 ( 24 ), 5601 – 5621.
dc.identifier.citedreferenceKounaves, S. P., et al. ( 2010a ), Discovery of natural perchlorate in the Antarctic Dry Valleys and its global implications, Environ. Sci. Technol., 44 ( 7 ), 2360 – 2364, doi: 10.1021/es9033606.
dc.identifier.citedreferenceKounaves, S. P., et al. ( 2010b ), Soluble sulfate in the Martian soil at the Phoenix landing site, Geophys. Res. Lett., 37, L09201, doi: 10.1029/2010GL042613.
dc.identifier.citedreferenceKounaves, S. P., B. L. Carrier, G. D. O’Neil, S. T. Stroble, and M. W. Claire ( 2014a ), Evidence of Martian perchlorate, chlorate, and nitrate in Mars meteorite EETA79001: Implications for oxidants and organics, Icarus, 229, 206 – 213, doi: 10.1016/j.icarus.2013.11.012.
dc.identifier.citedreferenceKounaves, S. P., N. A. Chaniotakis, V. F. Chevrier, B. L. Carrier, K. E. Folds, V. M. Hansen, K. M. McElhoney, G. D. O’Neil, and A. W. Weber ( 2014b ), Identification of the perchlorate parent salts at the Phoenix Mars landing sites and possible implications, Icarus, 232, 226 – 231, doi: 10.1016/j.icarus.2014.01.016.
dc.identifier.citedreferenceKrasnopolsky, V. A. ( 2010 ), Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere, Icarus, 207, 638 – 647, doi: 10.1016/j.icarus.2009.12.036.
dc.identifier.citedreferenceLevy, J. S., J. W. Head, and D. R. Marchant ( 2009 ), Cold and dry processes in the Martian Arctic: Geomorphic observations at the Phoenix landing site and comparisons with terrestrial cold desert landforms, Geophys. Res. Lett., 36, L21203, doi: 10.1029/2009GL040634.
dc.identifier.citedreferenceLewis, B. R., and J. H. Carver ( 1983 ), Temperature dependence of the carbon dioxide photoabsorption cross section between 1200 Å and 1970 Å, J. Quant. Spectros. Radiat. Transfer, 30 ( 4 ), 297 – 309, doi: 10.1016/0022-4073(83)90027-4.
dc.identifier.citedreferenceLindner, B. L. ( 1988 ), Ozone on Mars—The effects of clouds and airborne dust, Planet. Space Sci., 36 ( 2 ), 125 – 144, doi: 10.1016/0032-0633(88)90049-9.
dc.identifier.citedreferenceLópez, M. I., and J. E. Sicre ( 1990 ), Physicochemical properties of chlorine oxides. 1. Composition, ultraviolet spectrum, and kinetics of the thermolysis of gaseous dichlorine hexoxide, J. Phys. Chem., 94 ( 9 ), 3860 – 3863, doi: 10.1021/j100372a094.
dc.identifier.citedreferenceLu, Z., Y. C. Chang, Q. Z. Yin, C. Y. Ng, and W. M. Jackson ( 2014 ), Evidence for direct molecular oxygen production in CO 2 photodissociation, Science, 346 ( 6205 ), 61 – 64, doi: 10.1126/science.1257156.
dc.identifier.citedreferenceMcFarland, M., D. L. Albritton, F. C. Fehsenfeld, E. E. Ferguson, and A. L. Schmeltekopf ( 1974 ), Energy dependence and branching ratio of the N 2 +  + O reaction, J. Geophys. Res., 79, 2925 – 2926, doi: 10.1029/JA079i019p02925.
dc.identifier.citedreferenceMellon, M. T., R. E. Arvidson, J. J. Marlow, R. J. Phillips, and E. Asphaug ( 2008 ), Periglacial landforms at the Phoenix landing site and the northern plains of Mars, J. Geophys. Res., 113, E00A23, doi: 10.1029/2007JE003039.
dc.identifier.citedreferenceMing, D. W., et al. ( 2014 ), Volatile and organic compositions of sedimentary rocks in Yellowknife Bay, Gale Crater, Mars, Science, 343 ( 6169 ), doi: 10.1126/science.1245267.
dc.identifier.citedreferenceMoortgat, G. W., W. Seiler, and P. Warneck ( 1983 ), Photodissociation of HCHO in air: CO and H 2 quantum yields at 220 K and 300 K, J. Chem. Phys., 78 ( 3 ), 1185 – 1190, doi: 10.1063/1.444911.
dc.identifier.citedreferenceMorris, R. V., et al. ( 2006 ), Mössbauer mineralogy of rock, soil, and dust at Meridiani Planum, Mars: Opportunity’s journey across sulfate‐rich outcrop, basaltic sand and dust, and hematite lag deposits, J. Geophys. Res., 111, E12S15, doi: 10.1029/2006JE002791.
dc.identifier.citedreferenceNakata, R. S., K. Watanabe, and F. M. Matsunaga ( 1965 ), Absorption and photoionization coefficients of CO 2 in the region of 580–1670 Å, Sci. Light, 14, 54 – 71.
dc.identifier.citedreferenceNavarro‐González, R., E. Vargas, J. de la Rosa, A. Raga, and C. P. McKay ( 2010 ), Reanalysis of the Viking results suggests perchlorate and organics at mid‐latitudes on Mars, J. Geophys. Res., 115, E12010, doi: 10.1029/2010JE003599.
dc.identifier.citedreferenceNesbitt, F. L., J. F. Gleason, and L. J. Stief ( 1999 ), Temperature dependence of the rate constant for the reaction HCO + O 2  → HO 2  + CO at T  = 200‐398 K, J. Phys. Chem., 103 ( 16 ), 3038 – 3043, doi: 10.1021/jp984781q.
dc.identifier.citedreferenceNorman, R. B., G. Gronoff, and C. J. Mertens ( 2014 ), Influence of dust loading on atmospheric ionizing radiation on Mars, J. Geophys. Res. Space Physics, 119, 452 – 461, doi: 10.1002/2013JA019351.
dc.identifier.citedreferenceOgawa, M. ( 1971 ), Absorption cross sections of O 2 and CO 2 continua in the Schumann and far‐UV regions, J. Chem. Phys., 54 ( 6 ), 2550 – 2556, doi: 10.1063/1.1675211.
dc.identifier.citedreferenceOkabe, H. ( 1978 ), Photochemistry of Small Molecules, Wiley‐Interscience, New York.
dc.identifier.citedreferenceOrris, G. J., G. J. Harvey, D. T. Tsui, and J. E. Eldrige ( 2003 ), Preliminary analyses for perchlorate in selected natural materials and their derivative products, USGS Open‐File Rep. 03‐314.
dc.identifier.citedreferenceOsterloo, M. M., V. E. Hamilton, J. L. Bandfield, T. D. Glotch, A. M. Baldridge, P. R. Christensen, L. L. Tornabene, and F. S. Anderson ( 2008 ), Chloride‐bearing materials in the southern highlands of Mars, Science, 319 ( 5870 ), 1651 – 1654, doi: 10.1126/science.1150690.
dc.identifier.citedreferenceParker, D. R. ( 2009 ), Perchlorate in the environment: The emerging emphasis on natural occurrence, Environ. Chem., 6 ( 1 ), 10 – 27.
dc.identifier.citedreferencePavlov, A. A., G. Vasilyev, V. M. Ostryakov, A. K. Pavlov, and P. Mahaffy ( 2012 ), Degradation of the organic molecules in the shallow subsurface of Mars due to irradiation by cosmic rays, Geophys. Res. Lett., 39, L13202, doi: 10.1029/2012GL052166.
dc.identifier.citedreferencePrasad, S. S., and W. T. Huntress ( 1980 ), A model for gas‐phase chemistry in interstellar clouds. 1. The basic model, library of chemical reactions, and chemistry among C‐compounds, N‐compounds, and O‐compounds, Astrophys. J. Suppl. Ser., 43 ( 1 ), 1 – 35.
dc.identifier.citedreferencePrasad, S. S., and T. J. Lee ( 1994 ), Atmospheric chemistry of the reaction ClO + O 2  ← →ClO•O 2: Where it stands, what needs to be done, and why?, J. Geophys. Res., 99, 8225 – 8230, doi: 10.1029/93JD01809.
dc.identifier.citedreferenceQuinn, R. C., H. F. H. Martucci, S. R. Miller, C. E. Bryson, F. J. Grunthaner, and P. J. Grunthaner ( 2013 ), Perchlorate radiolysis on Mars and the origin of Martian soil reactivity, Astrobiology, 13 ( 6 ), 515 – 520, doi: 10.1089/ast.2013.0999.
dc.identifier.citedreferenceRajagopalan, S., T. A. Anderson, L. Fahlquist, K. A. Rainwater, M. Ridley, and W. A. Jackson ( 2006 ), Widespread presence of naturally occurring perchlorate in high plains of Texas and New Mexico, Environ. Sci. Technol., 40 ( 10 ), 3156 – 3162, doi: 10.1021/es052155i.
dc.identifier.citedreferenceSander, S. P., et al. ( 2011 ), Eval. 17, 684 pp., Jet Propul. Lab., Pasadena, Calif.
dc.identifier.citedreferenceSchuttlefield, J. D., J. B. Sambur, M. Gelwicks, C. M. Eggleston, and B. A. Parkinson ( 2011 ), Photooxidation of chloride by oxide minerals: Implications for perchlorate on Mars, J. Am. Chem. Soc., 133 ( 44 ), 17,521 – 17,523, doi: 10.1021/ja2064878.
dc.identifier.citedreferenceShaw, D. A., D. M. P. Holland, M. A. MacDonald, A. Hopkirk, M. A. Hayes, and S. M. McSweeney ( 1992 ), A study of the absolute photoabsorption cross section and the photoionization quantum efficiency of nitrogen from the ionization threshold to 485 Å, Chem. Phys., 166 ( 3 ), 379 – 391, doi: 10.1016/0301-0104(92)80097-F.
dc.identifier.citedreferenceShaw, D. A., D. M. P. Holland, M. A. Hayes, M. A. MacDonald, A. Hopkirk, and S. M. McSweeney ( 1995 ), A study of the absolute photoabsorption, photoionisation, and photodissociation cross section and the photoionisation quantum efficiency of carbon dioxide from the ionization threshold to 345 Å, Chem. Phys., 198 ( 3 ), 381 – 396, doi: 10.1016/0301-0104(95)00159-L.
dc.identifier.citedreferenceShemansky, D. E. ( 1972 ), CO 2 extinction coefficient 1700‐3000 Å, J. Chem. Phys., 56 ( 4 ), 1582, doi: 10.1063/1.1677408.
dc.identifier.citedreferenceSimonaitis, R., and J. Heicklen ( 1975 ), Perchloric acid: A possible sink for stratospheric chlorine, Planet. Space Sci., 23 ( 11 ), 1567 – 1569, doi: 10.1016/0032-0633(75)90010-0.
dc.identifier.citedreferenceSmith, C. A., L. T. Molina, J. J. Lamb, and M. J. Molina ( 1984 ), Kinetics of the reaction of OH with pernitric and nitric acids, Int. J. Chem. Kinet., 16 ( 1 ), 41 – 55, doi: 10.1002/kin.550160107.
dc.identifier.citedreferenceSmith, I. W. M., and D. W. A. Stewart ( 1994 ), Low‐temperature kinetics of reaction between neutral free radicals—Rate constants for the reaction of OH radical with N atoms (103 ≤ T/K ≤ 294) and O atoms (158 ≤ T/K ≤ 294), J. Chem. Soc. Faraday Trans., 90 ( 21 ), 3221 – 3227, doi: 10.1039/ft9949003221.
dc.identifier.citedreferenceSmith, M. D., M. J. Wolff, R. T. Clancy, and S. L. Murchie ( 2009 ), Compact Reconnaissance Imaging Spectrometer observations of water vapor and carbon monoxide, J. Geophys. Res., 114, E00D03, doi: 10.1029/2008JE003288.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.