Show simple item record

Geomagnetic disturbance intensity dependence on the universal timing of the storm peak

dc.contributor.authorKatus, R. M.
dc.contributor.authorLiemohn, M. W.
dc.contributor.authorKeesee, A. M.
dc.contributor.authorImmel, T. J.
dc.contributor.authorIlie, R.
dc.contributor.authorWelling, D. T.
dc.contributor.authorGanushkina, N. Yu.
dc.contributor.authorPerlongo, N. J.
dc.contributor.authorRidley, A. J.
dc.date.accessioned2016-10-17T21:19:09Z
dc.date.available2017-10-05T14:33:49Zen
dc.date.issued2016-08
dc.identifier.citationKatus, R. M.; Liemohn, M. W.; Keesee, A. M.; Immel, T. J.; Ilie, R.; Welling, D. T.; Ganushkina, N. Yu.; Perlongo, N. J.; Ridley, A. J. (2016). "Geomagnetic disturbance intensity dependence on the universal timing of the storm peak." Journal of Geophysical Research: Space Physics 121(8): 7561-7571.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134203
dc.description.abstractThe role of universal time (UT) dependence on storm time development has remained an unresolved question in geospace research. This study presents new insight into storm progression in terms of the UT of the storm peak. We present a superposed epoch analysis of solar wind drivers and geomagnetic index responses during magnetic storms, categorized as a function of UT of the storm peak, to investigate the dependency of storm intensity on UT. Storms with Dst minimum less than −100 nT were identified in the 1970–2012 era (305 events), covering four solar cycles. The storms were classified into six groups based on the UT of the minimum Dst (40 to 61 events per bin) then each grouping was superposed on a timeline that aligns the time of the minimum Dst. Fifteen different quantities were considered: seven solar wind parameters and eight activity indices derived from ground‐based magnetometer data. Statistical analyses of the superposed means against each other (between the different UT groupings) were conducted to determine the mathematical significance of similarities and differences in the time series plots. It was found that the solar wind parameters have no significant difference between the UT groupings, as expected. The geomagnetic activity indices, however, all show statistically significant differences with UT during the main phase and/or early recovery phase. Specifically, the 02:00 UT groupings are stronger storms than those in the other UT bins. That is, storms are stronger when the Asian sector is on the nightside (American sector on the dayside) during the main phase.Key PointsWe statistically examine storm time solar wind and geophysical data as a function of UT of the storm peakThere is a significant UT dependence to large storms; larger storms occur with a peak near 02:00 UTThe difference in storm magnitude is caused by substorm activity and not by solar wind driving
dc.publisherAGU
dc.publisherWiley Periodicals, Inc.
dc.subject.othergeomagnetic indices
dc.subject.otherlongitudinal dependence
dc.subject.othermagnetic storms
dc.subject.otherspace weather
dc.subject.otherground‐based magnetometers
dc.titleGeomagnetic disturbance intensity dependence on the universal timing of the storm peak
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134203/1/jgra52755.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134203/2/jgra52755_am.pdf
dc.identifier.doi10.1002/2016JA022967
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceLove, J. J., and J. L. Gannon ( 2009 ), Revised Dst and the epicycles of magnetic disturbance: 1958-2007, Ann. Geophys. Atmos. Hydro. Space Sci., 27 ( 8 ), 3101.
dc.identifier.citedreferenceGonzalez, W. D., J. A. Joselyn, Y. Kamide, H. W. Kroehl, G. Rostoker, B. T. Tsurutani, and V. M. Vasyliunas ( 1994 ), What is a geomagnetic storm?, J. Geophys. Res., 99, 5771 – 5792, doi: 10.1029/93JA02867.
dc.identifier.citedreferenceGonzalez, W. D., B. T. Tsurutani, and A. L. Clua de Gonzalez ( 1999 ), Interplanetary origin of geomagnetic storms, Space Sci. Rev., 88, 529 – 562, doi: 10.1023/A:1005160129098.
dc.identifier.citedreferenceGreenspan, M. E., and D. C. Hamilton ( 2000 ), A test of the Dessler‐Parker‐Sckopke relation during magnetic storms, J. Geophys. Res., 105, 5419 – 5430, doi: 10.1029/1999JA000284.
dc.identifier.citedreferenceHuang, C. M. ( 2013 ), Disturbance dynamo electric fields in response to geomagnetic storms occurring at different universal times, J. Geophys. Res. Space Physics, 118, 496 – 501, doi: 10.1029/2012JA018118.
dc.identifier.citedreferenceImmel, T. J., and A. J. Mannucci ( 2013 ), Ionospheric redistribution during geomagnetic storms, J. Geophys. Res. Space Physics, 118, 7928 – 7939, doi: 10.1002/2013JA018919.
dc.identifier.citedreferenceIyemori, T. ( 1990 ), Storm‐time magnetospheric currents inferred from mid‐latitude geomagnetic field variations, J. Geomag. Geoelectr., 42, 1249 – 1265, doi: 10.5636/jgg.42.1249.
dc.identifier.citedreferenceIyemori, T., T. Araki, T. Kamei, and M. Takeda ( 1992 ), Mid‐Latitude Geomagnetic Indices ASY and SYM (provisional) No. 1 1989, Data Anal. Center for Geomag. and Space Magn., Kyoto Univ., Kyoto, Japan.
dc.identifier.citedreferenceJorgensen, A. M., H. E. Spence, W. J. Hughes, and H. J. Singer ( 2004 ), A statistical study of the global structure of the ring current, J. Geophys. Res., 97, A12204, doi: 10.1029/2003JA010090.
dc.identifier.citedreferenceKamide, Y., and N. Fukushima ( 1971 ), Analysis of magnetic storms with DR‐indices for equatorial ring current field, Rep. Ionos. Space Res. Jpn., 25, 125 – 162.
dc.identifier.citedreferenceKatus, R., M. W. Liemohn, D. L. Gallagher, A. Ridley, and S. Zou ( 2013 ), Evidence for potential and inductive convection during intense geomagnetic events using normalized superposed epoch analysis, J. Geophys. Res. Space Physics, 118, 181 – 191, doi: 10.1029/2012JA017915.
dc.identifier.citedreferenceKatus, R. M., and M. W. Liemohn ( 2013 ), Similarities and differences in low‐to middle‐latitude geomagnetic indices, J. Geophys. Res. Space Physics, 118, 5149 – 5156, doi: 10.1002/jgra.50501.
dc.identifier.citedreferenceLiemohn, M. W. ( 2003 ), Yet another caveat to using the Dessler‐Parker‐Sckopke relation, J. Geophys. Res., 108 ( A6 ), 1251, doi: 10.1029/2003JA009839.
dc.identifier.citedreferenceLiemohn, M. W., and J. U. Kozyra ( 2003 ), Lognormal form of the ring current energy content, J. Atmos. Sol. Terr. Phys., 65, 871 – 886, doi: 10.1016/S1364-6826(03)00088-9.
dc.identifier.citedreferenceLyatsky, W., P. T. Newell, and A. Hamza ( 2001 ), Solar illumination as cause of the equinoctial preference for geomagnetic activity, Geophys. Res. Lett, 28, 2353 – 2356, doi: 10.1029/2000GL012803.
dc.identifier.citedreferenceMandea, M., and M. Purucker ( 2005 ), Observing, modelling, and interpreting magnetic fields of the solid Earth, Surv. Geophys., 26 ( 4 ), 415 – 459, doi: 10.1007/s10712-005-3857-x.
dc.identifier.citedreferenceMayaud, P. N. ( 1980 ), Derivation, Meaning, and Use of Geomagnetic Indices, Geophys. Monogr. Ser., vol. 22, 154 pp., AGU, Washington, D. C., doi: 10.1029/GM022.
dc.identifier.citedreferenceNewell, P. T., T. Sotirelis, J. P. Skura, C.‐I. Meng, and W. Lyatsky ( 2002 ), Ultraviolet insolation drives seasonal and diurnal space weather variations, J. Geophys. Res., 107 ( A10 ), 1305, doi: 10.1029/2001JA000296.
dc.identifier.citedreferenceO’Brien, T. P., and R. L. McPherron ( 2000 ), An empirical phase space analysis of ring current dynamics: Solar wind control of injection and decay, J. Geophys. Res., 105, 7707 – 7719, doi: 10.1029/1998JA000437.
dc.identifier.citedreferencePerlongo, N. J., and A. J. Ridley ( 2016 ), Universal time effect in the response of the thermosphere to electric field changes, J. Geophys. Res. Space Physics, 121, 3681 – 3698, doi: 10.1002/2015JA021636.
dc.identifier.citedreferenceRussell, C. T., and R. L. McPherron ( 1973 ), Semiannual variation of geomagnetic activity, J. Geophys. Res., 78, 92 – 108, doi: 10.1029/JA078i001p00092.
dc.identifier.citedreferenceSaroso, S., T. Iyemori, and M. Sugiura ( 1993 ), Universal time variations in the ap and Dst indices and their possible cause, J. Geomagn. Geoelectr., 45 ( 7 ), 563 – 572, doi: 10.5636/jgg.45.563.
dc.identifier.citedreferenceSckopke, N. ( 1966 ), A general relation between the energy of trapped particles and the disturbance field near the Earth, J. Geophys. Res., 71, 3125 – 3130, doi: 10.1029/JZ071i013p03125.
dc.identifier.citedreferenceSugiura, M., and T. Kamei ( 1991 ), Equatorial Dst index 1957–1986, IAGA Bull. No. 40, ISGI, Saint‐Maur‐des‐fosses, France.
dc.identifier.citedreferenceTurner, N. E., D. N. Baker, T. I. Pulkkinen, J. L. Roeder, J. F. Fennell, and V. K. Jordanova ( 2001 ), Energy content in the storm time ring current, J. Geophys. Res., 106, 19,149 – 19,156, doi: 10.1029/2000JA003025.
dc.identifier.citedreferenceWanliss, J. A., and K. M. Showalter ( 2006 ), High‐resolution global storm index: Dst versus SYM‐H, J. Geophys. Res., 111, A02202, doi: 10.1029/2005JA011034.
dc.identifier.citedreferenceWeimer, D. R. ( 2004 ), Correction to “Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique”, J. Geophys. Res., 97, A12104, doi: 10.1029/2004JA010691.
dc.identifier.citedreferenceWeimer, D. R., D. M. Ober, N. C. Maynard, M. R. Collier, D. J. McComas, N. F. Ness, C. W. Smith, and J. Watermann ( 2003 ), Predicting interplanetary magnetic field (IMF) propagation delay times using the minimum variance technique, J. Geophys. Res., 108 ( A1 ), 1026, doi: 10.1029/2002JA009405.
dc.identifier.citedreferenceAstafyeva, E., I. Zakharenkova, and M. Förster ( 2015 ), Ionospheric response to the 2015 St. Patrick’s Day storm: A global multi‐instrumental overview, J. Geophys. Res. Space Physics, 120, 9023 – 9037, doi: 10.1002/2015JA021629.
dc.identifier.citedreferenceBarakat, A. R., J. V. Eccles, and R. W. Schunk ( 2015 ), Effects of geographic‐geomagnetic pole offset on ionospheric outflow: Can the ionosphere wag the magnetospheric tail?, Geophys. Res. Lett., 42, 8288 – 8293, doi: 10.1002/2015GL065736.
dc.identifier.citedreferenceBurton, R. K., R. L. McPherron, and C. T. Russell ( 1975 ), An empirical relationship between interplanetary conditions and Dst, J. Geophys. Res., 80, 4204 – 4214, doi: 10.1029/JA080i031p04204.
dc.identifier.citedreferenceCoster, A. J., M. J. Colerico, J. C. Foster, W. Rideout, and F. Rich ( 2007 ), Longitude sector comparisons of storm enhanced density, Geophys. Res. Lett., 34, L18105, doi: 10.1029/2007GL030682.
dc.identifier.citedreferenceCrooker, N. U., and G. L. Siscoe ( 1974 ), Model geomagnetic disturbance from asymmetric ring current particles, J. Geophys. Res., 79, 589, doi: 10.1029/JA079i004p00589.
dc.identifier.citedreferenceCrooker, N. U., and G. L. Siscoe ( 1981 ), Birkeland currents as the cause of the low‐latitude asymmetric disturbance field, J. Geophys. Res., 86, 11,201 – 11,210, doi: 10.1029/JA086iA13p11201.
dc.identifier.citedreferenceDavis, T. N., and M. Sugiura ( 1966 ), Auroral electrojet activity index AE and its universal time variations, J. Geophys. Res., 71, 785 – 801, doi: 10.1029/JZ071i003p00785.
dc.identifier.citedreferenceDessler, A. J., and E. N. Parker ( 1959 ), Hydromagnetic theory of geomagnetic storms, J. Geophys. Res., 64, 2239 – 2252, doi: 10.1029/JZ064i012p02239.
dc.identifier.citedreferenceDubyagin, S., N. Ganushkina, M. Kubyshkina, and M. Liemohn ( 2014 ), Contribution from different current systems to SYM and ASY midlatitude indices, J. Geophys. Res. Space Physics, 119, 7243 – 7263, doi: 10.1002/2014JA020122.
dc.identifier.citedreferenceDungey, J. W. ( 1961 ), Interplanetary magnetic field and the auroral zones, Phys. Rev. Lett., 6, 47 – 48, doi: 10.1103/PhysRevLett.6.47.
dc.identifier.citedreferenceFoster, J. C., A. J. Coster, P. J. Erickson, W. Rideout, F. J. Rich, T. J. Immel, and B. R. Sandel ( 2005 ), Redistribution of the stormtime ionosphere and the formation of the plasmaspheric bulge, in Inner Magnetosphere Interactions: New Perspectives From Imaging, edited by J. Burch, M. Schulz, and H. Spence, pp. 277 – 289, AGU, Washington, D. C.
dc.identifier.citedreferenceFukushima, N., and Y. Kamide ( 1973 ), Partial ring current models for worldwide geomagnetic disturbances, Rev. Geophys., 11, 795 – 853, doi: 10.1029/RG011i004p00795.
dc.identifier.citedreferenceGannon, J. L., and J. J. Love ( 2011 ), USGS 1‐min Dst index, J. Atmos. Sol. Terr. Phys., 73 ( 2 ), 323 – 334.
dc.identifier.citedreferenceGanushkina, N., T. I. Pulkkinen, M. Liemohn, and A. Milillo ( 2006 ), Evolution of the proton ring current energy 670 distribution during April 21–25, 2001 storm, J. Geophys. Res., 111, A11S08, doi: 10.1029/2006JA011609.
dc.identifier.citedreferenceGanushkina, N. Y., M. W. Liemohn, and T. I. Pulkkinen ( 2012 ), Storm‐time ring current: Model‐dependent results, Ann. Geophys., 30, 177 – 202, doi: 10.5194/angeo-30-177-2012.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.