Show simple item record

Can an electron gun solve the outstanding problem of magnetosphere‐ionosphere connectivity?

dc.contributor.authorDelzanno, Gian Luca
dc.contributor.authorBorovsky, Joseph E.
dc.contributor.authorThomsen, Michelle F.
dc.contributor.authorGilchrist, Brian E.
dc.contributor.authorSanchez, Ennio
dc.date.accessioned2016-10-17T21:19:11Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationDelzanno, Gian Luca; Borovsky, Joseph E.; Thomsen, Michelle F.; Gilchrist, Brian E.; Sanchez, Ennio (2016). "Can an electron gun solve the outstanding problem of magnetosphere‐ionosphere connectivity?." Journal of Geophysical Research: Space Physics 121(7): 6769-6773.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134206
dc.description.abstractDetermining the magnetic connectivity between magnetospheric phenomena and ionospheric phenomena is an outstanding problem of magnetospheric and ionospheric physics. Accurately establishing this connectivity could answer a variety of long‐standing questions. The most viable option to solve this is by means of a high‐power electron beam fired from a magnetospheric spacecraft and spotted at its magnetic footpoint in the ionosphere. This has technical difficulties. Progress has been made on mitigating the major issue of spacecraft charging. The remaining physics issues are identified, together with the need for a synergistic effort in modeling, laboratory experiments, and, ultimately, testing in space. The goal of this commentary is to stimulate awareness and interest on the magnetosphere‐ionosphere connectivity problem and possibly accelerate progress toward its solution.Key PointsElectron beams could be used for magnetic field line mappingSpacecraft charging problems could be mitigated with a plasma contractorSeveral outstanding issues are identified
dc.publisherLos Alamos Natl. Lab.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherspacecraft charging
dc.subject.otherelectron beams
dc.subject.othermagnetosphere/ionosphere coupling
dc.subject.othermagnetic field line mapping
dc.titleCan an electron gun solve the outstanding problem of magnetosphere‐ionosphere connectivity?
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134206/1/jgra52752.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134206/2/jgra52752_am.pdf
dc.identifier.doi10.1002/2016JA022728
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceSergeev, V. A., M. Malkov, and K. Mursula ( 1993 ), Testing the isotropic boundary algorithm method to evaluate the magnetic field configuration in the tail, J. Geophys. Res., 98, 7609 – 7620.
dc.identifier.citedreferenceOhler, S. G., B. E. Gilchrist, and A. D. Gallimore ( 1995 ), Non‐intrusive electron number density measurements in the plume of a 1 kW arcjet using a modern microwave interferometer, IEEE Trans. Plasma Sci., 23 ( 3 ), 428 – 435.
dc.identifier.citedreferenceOlsen, R. C. ( 1985 ), Experiments in charge control at geosynchronous orbit—ATS‐5 and ATS‐6, J. Spacecraft, 22, 254 – 264.
dc.identifier.citedreferenceOraevsky, V. N., and P. Tríska ( 1993 ), Active plasma experiment—Project APEX, Adv. Space Res., 13, 103 – 111.
dc.identifier.citedreferenceØstgaard, N., B. K. Humberset, and K. M. Laundal ( 2011 ), Evolution of auroral asymmetries in the conjugate hemispheres during two substorms, Geophys. Res. Lett., 38, L03101, doi: 10.1029/2010GL046057.
dc.identifier.citedreferencePellat, R., and R. Z. Sagdeev ( 1980 ), Concluding remarks on the ARAKS experiments, Ann. Geophys., 36, 443 – 446.
dc.identifier.citedreferencePorazik, P., J. R. Johnson, I. Kaganovich, and E. Sanchez ( 2014 ), Modification of the loss cone for energetic particles, Geophys. Res. Lett., 41, 8107 – 8113, doi: 10.1002/2014GL061869.
dc.identifier.citedreferenceRoy, R. I. S., D. E. Hastings, and S. Taylor ( 1996 ), Three‐dimensional plasma particle‐in‐cell calculations of ion thruster backflow contamination, J. Comp. Phys., 128, 6 – 18.
dc.identifier.citedreferenceSchmidt, R., et al. ( 1995 ), Results from active spacecraft potential control on the Geotail spacecraft, J. Geophys. Res., 100, 17,253 – 17,259.
dc.identifier.citedreferenceShevchenko, I. G., V. Sergeev, M. Kubyshkina, V. Angelopoulos, K. H. Glassmeier, and H. J. Singer ( 2010 ), Estimation of magnetosphere‐ionosphere mapping accuracy using isotropy boundary and THEMIS observations, J. Geophys. Res., 115, A11206, doi: 10.1029/2010JA015354.
dc.identifier.citedreferenceStenbaek‐Nielsen, H. C., T. N. Davis, and N. W. Glass ( 1972 ), Relative motion of auroral conjugate points during substorms, J. Geophys. Res., 77, 1844 – 1858.
dc.identifier.citedreferenceTorkar, K., et al. ( 2001 ), Active spacecraft potential for Cluster—Implementation and first results, Ann. Geophys., 19, 1289 – 1302.
dc.identifier.citedreferenceTsyganenko, N. A. ( 1989 ), A magnetospheric magnetic field model with a warped tail current sheet, Planet. Space Sci., 37, 5 – 20.
dc.identifier.citedreferenceTsyganenko, N. A., and A. V. Usmanov ( 1982 ), Determination of the magnetospheric current system parameters and development of experimental field models based on data from IMP and HEOS satellites, Planet. Space Sci., 30, 985 – 998.
dc.identifier.citedreferenceTsyganenko, N. A., and M. I. Sitnov ( 2007 ), Magnetospheric configurations from a high‐resolution data‐based magnetic field model, J. Geophys. Res., 112, A06225, doi: 10.1029/2007JA012260.
dc.identifier.citedreferenceUman, M. A. ( 1987 ), The Lightning Discharge, Academic Press, Orlando.
dc.identifier.citedreferenceUspensky, M. V., E. E. Timopheev, and Y. L. Sverdlov ( 1980 ), ARAKS doppler radar measurements of the ionospheric effects of artificial electron beams in the North Hemisphere, Ann. Geophys., 36, 303 – 311.
dc.identifier.citedreferenceWalker, M. L. R., and A. D. Gallimore ( 2005 ), Neutral Density Map of Hall Thruster Plume Expansion in a Vacuum Chamber, Rev. Sci. Instrum., 76 ( 5 ), 053509.
dc.identifier.citedreferenceWang, J., D. Brinza, and M. Young ( 2001 ), Three‐dimensional particle simulations of ion propulsion plasma environment for Deep Space 1, J. Spacecr. Rockets, 38, 433 – 440.
dc.identifier.citedreferenceWeimer, D. R., C. K. Goertz, D. A. Gurnett, N. C. Maynard, and J. L. Burch ( 1985 ), Auroral zone electric fields from DE1 and 2 at magnetic conjuctions, J. Geophys. Res., 90, 7479 – 7494.
dc.identifier.citedreferenceWeiss, L. A., M. F. Thomsen, G. D. Reeves, and D. J. McComas ( 1997 ), An examination of the Tsyganenko (T89A) field model using a database of two‐satellite magnetic conjunctions, J. Geophys. Res., 102, 4911 – 4918.
dc.identifier.citedreferenceWinckler, J. R. ( 1992 ), Controlled experiments in the Earth’s magnetosphere with artificial electron beams, Rev. Modern Phys., 64, 859, doi: 10.1103/RevModPhys.64.859.
dc.identifier.citedreferenceZhulin, I. A., A. V. Kustov, M. V. Uspensky, and T. V. Miroshnikova ( 1980 ), Radar observations of the overdense ionospheric ionization created by the artificial electron beam in the “Zarnitza‐2” experiment, Ann. Geophys., 36, 313 – 318.
dc.identifier.citedreferenceLavergnat, J. ( 1982 ), The French‐Soviet experiment ARAKS: Main results, in Artificial Particle Beams in Space Plasma Studies, edited by B. Grandal, 87 pp., Plenum, New York.
dc.identifier.citedreferenceMacDonald, E. A., J. E. Borovsky, B. Larsen, and E. Dors ( 2012 ), A science mission concept to actively probe magnetosphere‐ionosphere coupling, Decadal Surv. Solar Space Phys., 2012, Paper 171.
dc.identifier.citedreferenceBeal, B. E., A. D. Gallimore, and W. A. Hargus ( 2005 ), Plasma properties downstream of a low‐power Hall thruster, Phys. Plasmas, 12, 123503, doi: 10.1063/1.2145097.
dc.identifier.citedreferenceBorovsky, J. ( 2002 ), The magnetosphere‐ionosphere observatory (MIO), Los Alamos Natl. Lab., Los Alamos, New Mexico. [Available at http://www.lanl.gov/csse/MIOwriteup.pdf.]
dc.identifier.citedreferenceBoyd, I. D. ( 2002 ), Hall thruster plasma plume modeling and comparison to express flight data, 40th Aerospace Sci. Meet. and Exhibit, AIAA‐2002‐0487, Reno, Nevada, 14–17 Jan.
dc.identifier.citedreferenceBoyd, I. D. ( 2006 ), Numerical simulation of Hall thruster plasma plumes in space, IEEE Trans. Plasma Sci., 34, 2140 – 2147.
dc.identifier.citedreferenceChoueri, E., V. N. Oraevsky, V. S. Dokukin, A. S. Volokitin, S. A. Pulinets, Y. Y. Ruzhin, and V. V. Afonin ( 2001 ), Observations and modeling of neutral gas releases from the APEX satellite, J. Geophys. Res., 106, 25,673 – 25,681.
dc.identifier.citedreferenceComfort, R. H., T. E. Moore, P. D. Craven, C. J. Pollock, F. S. Mozer, and W. S. Williamson ( 1998 ), Spacecraft potential control by the Plasma Source Instrument on the POLAR satellite, J. Spacecraft Rockets, 35, 845 – 849.
dc.identifier.citedreferenceDelzanno, G. L., J. E. Borovsky, M. F. Thomsen, J. D. Moulton, and E. A. MacDonald ( 2015a ), Future beam experiments in the magnetosphere with plasma contactors: How do we get the charge off the spacecraft?, J. Geophys. Res. Space Physics, 120, 3647 – 3664, doi: 10.1002/2014JA020608.
dc.identifier.citedreferenceDelzanno, G. L., J. E. Borovsky, M. F. Thomsen, and J. D. Moulton ( 2015b ), Future beam experiments in the magnetosphere with plasma contactors: The electron collection and ion emission routes, J. Geophys. Res. Space Physics, 120, 3588 – 3602, doi: 10.1002/2014JA020683.
dc.identifier.citedreferenceFeldstein, Y. I., and Y. I. Galperin ( 1985 ), The auroral luminosity structure in the high‐latitude upper atmosphere: Its dynamics and relationship to the large‐scale structure of the Earth’s magnetosphere, Rev. Geophys., 23, 217 – 275.
dc.identifier.citedreferenceGabdullin, F. F., A. G. Korsun, and E. M. Tverdokhlebova ( 2008 ), The plasma plume emitted onboard the International Space Station under the effect of the geomagnetic field, IEEE Trans. Plasma Sci., 36 ( 5 ), 2207 – 2213.
dc.identifier.citedreferenceGallimore, A. D. ( 2001 ), Near‐ and far‐field characterization of stationary plasma thruster plumes, J. Spacecr. Rockets, 38, 441 – 453.
dc.identifier.citedreferenceGalvez, M., and J. E. Borovsky ( 1988 ), The electrostatic two‐stream instability driven by slab‐shaped and cylindrical beams injected into plasmas, Phys. Fluids, 31, 857 – 862.
dc.identifier.citedreferenceHallinan, T. J., H. C. Stenbaek‐Nielsen, and J. R. Winckler ( 1978 ), The Echo 4 electron beam experiment: Television observation of artificial auroral streaks indicating strong beam interaction in the high‐latitude magnetosphere, J. Geophys. Res., 83, 3263 – 3272.
dc.identifier.citedreferenceHastings, D., and H. Garrett ( 1996 ), Spacecraft‐Environment Interactions, Cambridge Univ. Press, Cambridge.
dc.identifier.citedreferenceHones, E. W., M. F. Thomsen, G. D. Reeves, L. A. Weiss, D. J. McComas, and P. T. Newell ( 1996 ), Observational determination of magnetic connectivity of the geosynchronous region of the magnetosphere to the auroral oval, J. Geophys. Res., 101, 2629 – 2640.
dc.identifier.citedreferenceIzhovkina, N. I., J. C. Kosik, A. K. Pyatsi, H. Reme, A. Saint‐Marc, J. L. Sverdlov, M. V. Uspensky, J. M. Vigo, J. F. Zarnitsky, and I. A. Zhulin ( 1980 ), Comparison between experimental and theoretical conjugate points locations in the Araks experiments, Ann. Geophys., 36, 319 – 321.
dc.identifier.citedreferenceJaynes, A. N., et al. ( 2015 ), Correlated Pc4‐5 ULF waves, whistler‐mode chorus, and pulsating aurora observed by the Van Allen Probes and ground‐based systems, J. Geophys. Res. Space Physics, 120, 8749 – 8761, doi: 10.1002/2015JA021380.
dc.identifier.citedreferenceKrehbiel, P. R., M. Brook, and R. A. McCrory ( 1979 ), An analysis of the charge structure of lightning discharges to ground, J. Geophys. Res., 84, 2432 – 2456, doi: 10.1029/JC084iC05p02432.
dc.identifier.citedreferenceMarshall, R. A., M. Nicholls, E. Sanchez, N. G. Lehtinen, and J. Nellson ( 2014 ), Diagnostics of an artificial relativistic electron beam interacting with the atmosphere, J. Geophys. Res. Space Physics, 119, 8560 – 8577, doi: 10.1002/2014JA020427.
dc.identifier.citedreferenceMeng, C.‐I., B. Mauk, and C. E. McIlwain ( 1979 ), Electron precipitation of evening diffuse aurora and its conjugate electron fluxes near the magnetospheric equator, J. Geophys. Res., 84, 2545 – 2558.
dc.identifier.citedreferenceMotoba, T., S. Ohtani, B. J. Anderson, H. Korth, D. Mitchell, L. J. Lanzerotti, K. Shiokawa, M. Conners, C. A. Kletzing, and G. D. Reeves ( 2015 ), On the formation and origin of substorm growth phase/onset auroral arcs inferred from conjugate space‐ground observations, J. Geophys. Res. Space Physics, 120, 8707 – 8722, doi: 10.1002/2015JA021676.
dc.identifier.citedreferenceMott‐Smith, H., and I. Langmuir ( 1926 ), The theory of collectors in gaseous discharges, Phys. Rev., 28, 727 – 763.
dc.identifier.citedreferenceNational Research Council ( 2012 ), Magnetosphere‐to‐ionosphere field‐line tracing technology, in Solar and Space Physics: A Science for a Technological Society, pp. 333, Natl. Academies Press, Washington, D. C.
dc.identifier.citedreferenceNishimura, Y., et al. ( 2011 ), Estimation of magnetic field mapping accuracy using the pulsating aurora‐chorus connection, Geophys. Res. Lett., 38, L14110, doi: 10.1029/2011GL048281.
dc.identifier.citedreferenceOber, D. M., N. C. Maynard, W. J. Burke, J. Moen, A. Egeland, P. E. Sandhold, C. J. Farrugia, E. J. Weber, and J. D. Scudder ( 2000 ), Mapping prenoon auroral structures to the magnetosphere, J. Geophys. Res., 105, 27,519 – 27,530.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.