Show simple item record

Breaking Malus’ law: Highly efficient, broadband, and angular robust asymmetric light transmitting metasurface

dc.contributor.authorZhang, Cheng
dc.contributor.authorPfeiffer, Carl
dc.contributor.authorJang, Taehee
dc.contributor.authorRay, Vishva
dc.contributor.authorJunda, Maxwell
dc.contributor.authorUprety, Prakash
dc.contributor.authorPodraza, Nikolas
dc.contributor.authorGrbic, Anthony
dc.contributor.authorGuo, L. Jay
dc.date.accessioned2016-10-17T21:19:12Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationZhang, Cheng; Pfeiffer, Carl; Jang, Taehee; Ray, Vishva; Junda, Maxwell; Uprety, Prakash; Podraza, Nikolas; Grbic, Anthony; Guo, L. Jay (2016). "Breaking Malus’ law: Highly efficient, broadband, and angular robust asymmetric light transmitting metasurface." Laser & Photonics Reviews 10(5): 791-798.
dc.identifier.issn1863-8880
dc.identifier.issn1863-8899
dc.identifier.urihttps://hdl.handle.net/2027.42/134207
dc.description.abstractHigh efficiency, broad bandwidth, and robust angular tolerance are key considerations in photonic device design. Here, a few‐layer, asymmetric light transmitting metasurface that simultaneously satisfies all the above requirements is reported. The metasurface consists of coupled metallic sheets. It has a measured transmission efficiency of 80%, extinction ratio of 13.8 dB around 1.5 μm, and a full width half maximum bandwidth of 1.7 μm. It is as thin as 290 nm, has good performance tolerance against the angle of incidence and constituent nano‐structure geometry variations. This work demonstrates a practical asymmetric light transmission device with optimal performance for large scale manufacturing.A few‐layer, asymmetric light transmitting metasurface consisting of coupled metallic sheets is reported. It has a measured transmission efficiency of 80%, extinction ratio of 13.8 dB around 1.5 μm, and a full width half maximum bandwidth of 1.7 μm. It is as thin as 290 nm, has good performance tolerance against the angle of incidence and constituent nano‐structure geometry variations.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherasymmetric light transmission
dc.subject.othermetamaterial
dc.subject.otherangle‐insensitive device
dc.subject.otherplasmonics
dc.subject.othermetasurface
dc.titleBreaking Malus’ law: Highly efficient, broadband, and angular robust asymmetric light transmitting metasurface
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134207/1/lpor201500328_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134207/2/lpor201500328.pdf
dc.identifier.doi10.1002/lpor.201500328
dc.identifier.sourceLaser & Photonics Reviews
dc.identifier.citedreferenceC. Pfeiffer, N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, Nano Lett. 14, 2491 – 2497 ( 2014 ).
dc.identifier.citedreferenceA. V. Kildishev, A. Boltasseva, and V. M. Shalaev, Science 339, ( 2013 ).
dc.identifier.citedreferenceC. Pfeiffer and A. Grbic, Phys. Rev. Lett. 110, 197401 ( 2013 ).
dc.identifier.citedreferenceH. Cheng, Z. Liu, S. Chen, and J. Tian, Adv. Mater., 5410 – 5421 ( 2015 ).
dc.identifier.citedreferenceY.‐K. R. Wu, A. E. Hollowell, C. Zhang, and L. J. Guo, Sci. Rep. 3 ( 2013 ).
dc.identifier.citedreferenceA. Shaltout, J. Liu, V. M. Shalaev, and A. V. Kildishev, Nano Lett. 14, 4426 – 4431 ( 2014 ).
dc.identifier.citedreferenceC. Pfeiffer, C. Zhang, V. Ray, L. J. Guo, and A. Grbic, Phys. Rev. Lett. 113, 023902 ( 2014 ).
dc.identifier.citedreferenceY. Yang, W. Wang, P. Moitra, I. I. Kravchenko, D. P. Briggs, and J. Valentine, Nano Lett. 14, 1394 – 1399 ( 2014 ).
dc.identifier.citedreferenceN. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, et al., Science 340, 1304 – 1307 ( 2013 ).
dc.identifier.citedreferenceC. Pfeiffer and A. Grbic, Phys. Rev. Appl. 2, 044011 ( 2014 ).
dc.identifier.citedreferenceC. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, Optica 3, 427 – 432 ( 2016 ).
dc.identifier.citedreferenceD. Lin, P. Fan, E. Hasman, and M. L. Brongersma, Science 345, 298 – 302 ( 2014 ).
dc.identifier.citedreferenceX. Ni, S. Ishii, A. V. Kildishev, and V. M. Shalaev, Light Sci. Appl. 2, e72 ( 2013 ).
dc.identifier.citedreferenceT. Xu and H. J. Lezec, Nat. Commun. 5 ( 2014 ).
dc.identifier.citedreferenceC. Pfeiffer and A. Grbic, Phys. Rev. Appl. 2, 044012 ( 2014 ).
dc.identifier.citedreferenceP. R. West, J. L. Stewart, A. V. Kildishev, V. M. Shalaev, V. V. Shkunov, F. Strohkendl, et al., Opt. Express 22, 26212 – 26221 ( 2014 ).
dc.identifier.citedreferenceR. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, et al., Phys. Rev. Lett. 110, 093902 ( 2013 ).
dc.identifier.citedreferenceJ. A. H. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, et al., Phys. Rev. Lett. 97, 146102 ( 2006 ).
dc.identifier.citedreferenceG. Li, S. Chen, N. Pholchai, B. Reineke, P. W. H. Wong, E. Y. B. Pun, et al., Nat. Mater. 14, 607 – 612 ( 2015 ).
dc.identifier.citedreferenceF. Monticone, N. M. Estakhri, and A. Alù, Phys. Rev. Lett. 110, 203903 ( 2013 ).
dc.identifier.citedreferenceC. Pfeiffer and A. Grbic, IEEE Trans. Microw. Theory Tech. 61, 4407 – 4417 ( 2013 ).
dc.identifier.citedreferenceC. Menzel, C. Rockstuhl, and F. Lederer, Phys. Rev. A 82, 053811 ( 2010 ).
dc.identifier.citedreferenceC. Lu and R. H. Lipson, Laser Photonics Rev. 4, 568 – 580 ( 2010 ).
dc.identifier.citedreferenceX. Chen, F. Yang, C. Zhang, J. Zhou, and L. J. Guo, ACS Nano 10, 4039 – 4045 ( 2016 ).
dc.identifier.citedreferenceW. Srituravanich, N. Fang, C. Sun, Q. Luo, and X. Zhang, Nano Lett. 4, 1085 – 1088 ( 2004 ).
dc.identifier.citedreferenceC. Zhang, H. Subbaraman, Q. Li, Z. Pan, J. G. Ok, T. Ling, et al., J. Mater. Chem. C 4, 5133 – 5153 ( 2016 ).
dc.identifier.citedreferenceL. J. Guo, Adv. Mater. 19, 495 – 513 ( 2007 ).
dc.identifier.citedreferenceC. Zhang, D. Zhao, D. Gu, H. Kim, T. Ling, Y.‐K. R. Wu, et al., Adv. Mater. 26, 5696 – 5701 ( 2014 ).
dc.identifier.citedreferenceJ. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, et al., Nat. Commun. 4, 1599 ( 2013 ).
dc.identifier.citedreferenceJ. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, Nature 426, 264 – 267 ( 2003 ).
dc.identifier.citedreferenceE. Knill, R. Laflamme, and G. J. Milburn, Nature 409, 46 – 52 ( 2001 ).
dc.identifier.citedreferenceR. Fleury, D. L. Sounas, C. F. Sieck, M. R. Haberman, and A. Alù, Science 343, 516 – 519 ( 2014 ).
dc.identifier.citedreferenceR. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, et al., Phys. Rev. B 80, 153104, 2009 ).
dc.identifier.citedreferenceS. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, Opt. Express 20, 26636 – 26648 ( 2012 ).
dc.identifier.citedreferenceC. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, et al., Phys. Rev. Lett. 104, 253902 ( 2010 ).
dc.identifier.citedreferenceV. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, Nano Lett. 7, 1996 – 1999 ( 2007 ).
dc.identifier.citedreferenceD. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, et al., Nat. Photonics 7, 579 – 582 ( 2013 ).
dc.identifier.citedreferenceL. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, et al., Nat. Photonics 5, 758 – 762 ( 2011 ).
dc.identifier.citedreferenceA. Cicek, M. B. Yucel, O. A. Kaya, and B. Ulug, Opt. Lett. 37, 2937 – 2939 ( 2012 ).
dc.identifier.citedreferenceC. Wang, X.‐L. Zhong, and Z.‐Y. Li, Sci. Rep. 2 ( 2012 ).
dc.identifier.citedreferenceJ. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, et al., Science 325, 1513 – 1515 ( 2009 ).
dc.identifier.citedreferenceS. Wu, S. Xu, Y. Zhang, Y. Wu, J. Jiang, Q. Wang, et al., Opt. Lett. 39, 6426 – 6429 ( 2014 ).
dc.identifier.citedreferenceF. Qin, L. Ding, L. Zhang, F. Monticone, C. C. Chum, J. Deng, et al., Sci. Adv. 2 ( 2016 ).
dc.identifier.citedreferenceZ. Li, S. Chen, C. Tang, W. Liu, H. Cheng, Z. Liu, et al., Appl. Phys. Lett. 105, 201103 ( 2014 ).
dc.identifier.citedreferenceS. Cakmakyapan, H. Caglayan, A. E. Serebryannikov, and E. Ozbay, Appl. Phys. Lett. 98, 051103 ( 2011 ).
dc.identifier.citedreferenceS. Cakmakyapan, A. E. Serebryannikov, H. Caglayan, and E. Ozbay, Opt. Lett. 35, 2597 – 2599 ( 2010 ).
dc.identifier.citedreferenceZ. H. Zhu, K. Liu, W. Xu, Z. Luo, C. C. Guo, B. Yang, et al., Opt. Lett. 37, 4008 – 4010 ( 2012 ).
dc.identifier.citedreferenceA. E. Minovich, A. E. Miroshnichenko, A. Y. Bykov, T. V. Murzina, D. N. Neshev, and Y. S. Kivshar, Laser Photonics Rev. 9, 195 – 213 ( 2015 ).
dc.identifier.citedreferenceN. Yu and F. Capasso, Nat. Mater. 13, 139 – 150 ( 2014 ).
dc.identifier.citedreferenceY. Nanfang, P. Genevet, F. Aieta, M. A. Kats, R. Blanchard, G. Aoust, et al., IEEE J. Sel. Top. Quant. Electr. 19, 4700423 – 4700423 ( 2013 ).
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.