Show simple item record

Enhancing NMR Sensitivity of Naturalâ Abundance Lowâ γ Nuclei by Ultrafast Magicâ Angleâ Spinning Solidâ State NMR Spectroscopy

dc.contributor.authorZhang, Rongchun
dc.contributor.authorChen, Yitian
dc.contributor.authorRodriguez‐hornedo, Nair
dc.contributor.authorRamamoorthy, Ayyalusamy
dc.date.accessioned2016-10-17T21:19:14Z
dc.date.available2017-12-01T21:54:12Zen
dc.date.issued2016-10-05
dc.identifier.citationZhang, Rongchun; Chen, Yitian; Rodriguez‐hornedo, Nair ; Ramamoorthy, Ayyalusamy (2016). "Enhancing NMR Sensitivity of Naturalâ Abundance Lowâ γ Nuclei by Ultrafast Magicâ Angleâ Spinning Solidâ State NMR Spectroscopy." ChemPhysChem 17(19): 2962-2966.
dc.identifier.issn1439-4235
dc.identifier.issn1439-7641
dc.identifier.urihttps://hdl.handle.net/2027.42/134208
dc.description.abstractAlthough magicâ angleâ spinning (MAS) solidâ state NMR spectroscopy has been able to provide piercing atomicâ level insights into the structure and dynamics of various solids, the poor sensitivity has limited its widespread application, especially when the sample amount is limited. Herein, we demonstrate the feasibility of acquiring high S/N ratio naturalâ abundance 13Câ NMR spectrum of a small amount of sample (â 2.0â mg) by using multipleâ contact cross polarization (MCP) under ultrafast MAS. As shown by our data from pharmaceutical compounds, the signal enhancement achieved depends on the number of CP contacts employed within a single scan, which depends on the T1Ï of protons. The use of MCP for fast 2D 1H/13C heteronuclear correlation experiments is also demonstrated. The significant signal enhancement can be greatly beneficial for the atomicâ resolution characterization of many types of crystalline solids including polymorphic drugs and nanomaterials.Sensitive nuclei: Significant signal enhancement is achieved by multipleâ contact crossâ polarization under ultrafast magicâ angleâ spinning experiments on solids.
dc.publisherAcademic Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherstructure elucidation
dc.subject.othersignal enhancement
dc.subject.othercross-polarization
dc.subject.otherNMR spectroscopy
dc.subject.otherultrafast MAS
dc.titleEnhancing NMR Sensitivity of Naturalâ Abundance Lowâ γ Nuclei by Ultrafast Magicâ Angleâ Spinning Solidâ State NMR Spectroscopy
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbsecondlevelPhysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134208/1/cphc201600637.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134208/2/cphc201600637_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134208/3/cphc201600637-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/cphc.201600637
dc.identifier.sourceChemPhysChem
dc.identifier.citedreferenceJ. Tegenfeldt, U. Haeberlen, J. Magn. Reson. 1979, 36, 453 â 457.
dc.identifier.citedreferenceS. Asami, M. Rakwalska-Bange, T. Carlomagno, B. Reif, Angew. Chem. Int. Ed. 2013, 52, 2345 â 2349; Angew. Chem. 2013, 125, 2401 â 2405.
dc.identifier.citedreferenceR. Zhang, A. Ramamoorthy, J. Chem. Phys. 2016, 144, 034202.
dc.identifier.citedreferenceE. Barbet-Massin, A. J. Pell, J. Retel, L. B. Andreas, K. Jaudzems, W. T. Franks, A. J. Nieuwkoop, M. Hiller, V. A. Higman, P. Guerry, etâ al., J. Am. Chem. Soc. 2014, 136, 12489 â 12497.
dc.identifier.citedreferenceT. Kobayashi, K. Mao, P. Paluch, A. Nowak-Król, J. Sniechowska, Y. Nishiyama, D. T. Gryko, M. J. Potrzebowski, M. Pruski, Angew. Chem. Int. Ed. 2013, 52, 14108 â 14111; Angew. Chem. 2013, 125, 14358 â 14361.
dc.identifier.citedreferenceR. Zhang, M. K. Pandey, Y. Nishiyama, A. Ramamoorthy, Sci. Rep. 2015, 5, 11810.
dc.identifier.citedreferenceS. Wang, S. Parthasarathy, Y. Xiao, Y. Nishiyama, F. Long, I. Matsuda, Y. Endo, T. Nemoto, K. Yamauchi, T. Asakura, M. Takeda, T. Terauchi, M. Kainosho, Y. Ishii. Chem. Commun. 2015, 51, 15055 â 15058.
dc.identifier.citedreferenceY. Nishiyama, M. Malon, Y. Ishii, A. Ramamoorthy, J. Magn. Reson. 2014, 244, 1 â 5.
dc.identifier.citedreferenceN. Kulminskaya, S. K. Vasa, K. Giller, S. Becker, A. Kwan, M. Sunde, R. Linser, Chem. Commun. 2016, 52, 268 â 271.
dc.identifier.citedreferenceA. Pines, M. G. Gibby, J. S. Waugh, J. Chem. Phys. 1973, 59, 569.
dc.identifier.citedreferenceJ. Schaefer, E. O. Stejskal, J. Am. Chem. Soc. 1976, 98, 1031 â 1032.
dc.identifier.citedreferenceG. Metz, X. Wu, S. O. Smith, J. Magn. Reson. Ser. A 1994, 110, 219 â 227.
dc.identifier.citedreference 
dc.identifier.citedreferenceK. Saito, C. Martineau, G. Fink, F. Taulelle, Solid State Nucl. Magn. Reson. 2011, 40, 66 â 71;
dc.identifier.citedreferenceJ. J. Lopez, C. Kaiser, S. Asami, C. Glaubitz, J. Am. Chem. Soc. 2009, 131, 15970 â 15971.
dc.identifier.citedreferenceJ.-P. Demers, V. Vijayan, A. Lange, J. Phys. Chem. B 2015, 119, 2908 â 2920.
dc.identifier.citedreferenceM. I. Choudhary, Azizuddin Atta-Ur-Rahman, Nat. Prod. Lett. 2002, 16, 101 â 106.
dc.identifier.citedreferenceM. Kotecha, N. P. Wickramasinghe, Y. Ishii, Magn. Reson. Chem. 2007, 45, S 221 â S 230.
dc.identifier.citedreferenceP. K. Madhu, Isr. J. Chem. 2014, 54, 25 â 38.
dc.identifier.citedreferenceW. Tang, A. A. Nevzorov, J. Magn. Reson. 2011, 212, 245 â 248.
dc.identifier.citedreferenceA. A. Nevzorov, J. Magn. Reson. 2011, 209, 161 â 166.
dc.identifier.citedreferenceR. L. Johnson, K. Schmidt-Rohr, J. Magn. Reson. 2014, 239, 44 â 49.
dc.identifier.citedreferenceB. C. Gerstein, C. R. Dybowski, Transient Techniques in NMR of Solids: an Introduction to Theory and Practice, Academic Press, San Diego, 1985.
dc.identifier.citedreferenceT. Gopinath, K. R. Mote, G. Veglia, J. Biomol. NMR 2015, 62, 53 â 61.
dc.identifier.citedreferenceT. Gopinath, G. Veglia, Angew. Chem. Int. Ed. 2012, 51, 2731 â 2735; Angew. Chem. 2012, 124, 2785 â 2789.
dc.identifier.citedreferenceK. Schmidt-Rohr, H. W. Spiess, Multidimensional Solid-State NMR and Polymers, Academic Press, San Diego, 1994.
dc.identifier.citedreferenceM. R. Hansen, R. Graf, H. W. Spiess, Chem. Rev. 2016, 116, 1272 â 1308.
dc.identifier.citedreferenceM. Lu, G. Hou, H. Zhang, C. L. Suiter, J. Ahn, I.-J. L. Byeon, J. R. Perilla, C. J. Langmead, I. Hung, P. L. Gorâ ²kov, etâ al., Proc. Natl. Acad. Sci. USA 2015, 112, 14617 â 14622.
dc.identifier.citedreferenceA. Carlon, E. Ravera, J. Hennig, G. Parigi, M. Sattler, C. Luchinat, J. Am. Chem. Soc. 2016, 138, 1601 â 1610.
dc.identifier.citedreferenceT. V. Can, M. Sharma, I. Hung, P. L. Gorâ ²kov, W. W. Brey, T. A. Cross, J. Am. Chem. Soc. 2012, 134, 9022 â 9025.
dc.identifier.citedreferenceS. H. Park, B. B. Das, F. Casagrande, Y. Tian, H. J. Nothnagel, M. Chu, H. Kiefer, K. Maier, A. A. Deâ Angelis, F. M. Marassi, S. J. Opella, Nature 2012, 491, 779 â 783.
dc.identifier.citedreferenceM. Weingarth, M. Baldus, Acc. Chem. Res. 2013, 46, 2037 â 2046.
dc.identifier.citedreferenceS. Wang, R. A. Munro, L. Shi, I. Kawamura, T. Okitsu, A. Wada, S.-Y. Kim, K.-H. Jung, L. S. Brown, V. Ladizhansky, Nat. Methods 2013, 10, 1007 â 1012.
dc.identifier.citedreferenceY.-Y. Hu, A. Rawal, K. Schmidt-Rohr, Proc. Natl. Acad. Sci. USA 2010, 107, 22425 â 22429.
dc.identifier.citedreferenceM. J. Duer, J. Magn. Reson. 2015, 253, 98 â 110.
dc.identifier.citedreferenceJ. Xu, P. Zhu, Z. Gan, N. Sahar, M. Tecklenburg, M. D. Morris, D. H. Kohn, A. Ramamoorthy, J. Am. Chem. Soc. 2010, 132, 11504 â 11509.
dc.identifier.citedreferenceA. T. Petkova, Y. Ishii, J. J. Balbach, O. N. Antzutkin, R. D. Leapman, F. Delaglio, R. Tycko, Proc. Natl. Acad. Sci. USA 2002, 99, 16742 â 16747.
dc.identifier.citedreferenceR. Linser, R. Sarkar, A. Krushelnitzky, A. Mainz, B. Reif, J. Biomol. NMR 2014, 59, 1 â 14.
dc.identifier.citedreferenceH. R. Patel, A. S. Pithadia, J. R. Brender, C. A. Fierke, A. Ramamoorthy, J. Phys. Chem. Lett. 2014, 5, 1864 â 1870.
dc.identifier.citedreferenceE. Prade, H. J. Bittner, R. Sarkar, J. M. Lopezâ delâ Amo, G. Althoff-Ospelt, G. Multhaup, P. W. Hildebrand, B. Reif, J. Biol. Chem. 2015, 290, 28737 â 28745.
dc.identifier.citedreferenceR. K. Harris, J. Pharm. Pharmacol. 2007, 59, 225 â 239.
dc.identifier.citedreferenceA. K. Chattah, R. Zhang, K. H. Mroue, L. Y. Pfund, M. R. Longhi, A. Ramamoorthy, C. Garnero, Mol. Pharm. 2015, 12, 731 â 741.
dc.identifier.citedreferenceR. Tycko, Acc. Chem. Res. 2013, 46, 1923 â 1932.
dc.identifier.citedreferenceT. Maly, G. T. Debelouchina, V. S. Bajaj, K.-N. Hu, C.-G. Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri, P. C. A. vanâ derâ Wel, J. Herzfeld, R. J. Temkin, etâ al., J. Chem. Phys. 2008, 128, 052211.
dc.identifier.citedreferenceA. J. Rossini, A. Zagdoun, M. Lelli, A. Lesage, C. Copéret, L. Emsley, Acc. Chem. Res. 2013, 46, 1942 â 1951.
dc.identifier.citedreferenceà . Akbey, W. T. Franks, A. Linden, M. Orwick-Rydmark, S. Lange, H. Oschkinat, in Hyperpolarization Methods NMR Spectrosc., Springer, Berlin, 2013, pp.â 181 â 228.
dc.identifier.citedreferenceY. Ishii, J. P. Yesinowski, R. Tycko, J. Am. Chem. Soc. 2001, 123, 2921 â 2922.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.