Show simple item record

Concerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance

dc.contributor.authorLin, Hua
dc.contributor.authorTan, Gangjian
dc.contributor.authorShen, Jin‐ni
dc.contributor.authorHao, Shiqiang
dc.contributor.authorWu, Li‐ming
dc.contributor.authorCalta, Nicholas
dc.contributor.authorMalliakas, Christos
dc.contributor.authorWang, Si
dc.contributor.authorUher, Ctirad
dc.contributor.authorWolverton, Christopher
dc.contributor.authorKanatzidis, Mercouri G.
dc.date.accessioned2016-10-17T21:19:18Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09-12
dc.identifier.citationLin, Hua; Tan, Gangjian; Shen, Jin‐ni ; Hao, Shiqiang; Wu, Li‐ming ; Calta, Nicholas; Malliakas, Christos; Wang, Si; Uher, Ctirad; Wolverton, Christopher; Kanatzidis, Mercouri G. (2016). "Concerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance." Angewandte Chemie International Edition 55(38): 11431-11436.
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttps://hdl.handle.net/2027.42/134211
dc.description.abstractThermoelectric (TE) materials convert heat energy directly into electricity, and introducing new materials with high conversion efficiency is a great challenge because of the rare combination of interdependent electrical and thermal transport properties required to be present in a single material. The TE efficiency is defined by the figure of merit ZT=(S2Ï ) T/κ, where S is the Seebeck coefficient, Ï is the electrical conductivity, κ is the total thermal conductivity, and T is the absolute temperature. A new pâ type thermoelectric material, CsAg5Te3, is presented that exhibits ultralow lattice thermal conductivity (ca. 0.18â Wmâ 1â Kâ 1) and a high figure of merit of about 1.5 at 727â K. The lattice thermal conductivity is the lowest among stateâ ofâ theâ art thermoelectrics; it is attributed to a previously unrecognized phonon scattering mechanism that involves the concerted rattling of a group of Ag ions that strongly raises the Grüneisen parameters of the material.A pâ type thermoelectric material, CsAg5Te3, is presented. It exhibits ultralow thermal conductivity (Ï°tolâ 0.18â Wmâ 1â Kâ 1) and a high figure of merit (ZTâ 1.5 at 727â K). The low thermal conductivity is attributed to a previously unrecognized phonon scattering mechanism that involves the rattling of Ag ions, strongly raising the Grüneisen parameters of the material.
dc.publisherCambridge University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherconcerted rattling
dc.subject.otherCsAg5Te3
dc.subject.otherthermoelectric materials
dc.subject.othertunnel structure
dc.subject.otherultralow thermal conductivity
dc.titleConcerted Rattling in CsAg5Te3 Leading to Ultralow Thermal Conductivity and High Thermoelectric Performance
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelChemistry
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134211/1/anie201605015_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134211/2/anie201605015.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134211/3/anie201605015-sup-0001-misc_information.pdf
dc.identifier.doi10.1002/anie.201605015
dc.identifier.sourceAngewandte Chemie International Edition
dc.identifier.citedreferenceG. Mahan, B. Sales, J. Sharp, Phys. Today 1997, 50, 42.
dc.identifier.citedreferenceG. J. Snyder, E. S. Toberer, Nat. Mater. 2008, 7, 105.
dc.identifier.citedreferenceJ. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphaâ kdee, S. Yamanaka, G. J. Snyder, Science 2008, 321, 554.
dc.identifier.citedreferenceJ. P. Heremans, B. Wiendlocha, A. M. Chamoire, Energy Environ. Sci. 2012, 5, 5510.
dc.identifier.citedreferenceG. J. Tan, L. D. Zhao, F. Y. Shi, J. W. Doak, S. H. Lo, H. Sun, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, J. Am. Chem. Soc. 2014, 136, 7006.
dc.identifier.citedreferenceK. Biswas, J. Q. He, I. D. Blum, C. I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, M. G. Kanatzidis, Nature 2012, 489, 414.
dc.identifier.citedreferenceG. J. Snyder, M. Christensen, E. Nishibori, T. Caillat, B. B. Iversen, Nat. Mater. 2004, 3, 458.
dc.identifier.citedreferenceK. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher, T. Hogan, E. K. Polychroniadis, M. G. Kanatzidis, Science 2004, 303, 818.
dc.identifier.citedreferenceJ. S. Rhyee, K. H. Lee, S. M. Lee, E. Cho, S. Kim, E. Lee, Y. S. Kwon, J. H. Shim, G. Kotliar, Nature 2009, 459, 965.
dc.identifier.citedreferenceM.â K. Jana, K. Pal, U.â V. Waghmare, K. Biswas, Angew. Chem. Int. Ed. 2016, DOI: 10.1002/anie.201511737; Angew. Chem. 2016, DOI: 10.1002/ange.201511737.
dc.identifier.citedreferenceW. J. Qiu, L. L. Xi, P. Wei, X. Z. Ke, J. H. Yang, W. Q. Zhang, Proc. Natl. Acad. Sci. USA 2014, 111, 15031.
dc.identifier.citedreferenceH. L. Liu, X. Shi, F. F. Xu, L. L. Zhang, W. Q. Zhang, L. D. Chen, Q. Li, C. Uher, T. Day, G. J. Snyder, Nat. Mater. 2012, 11, 422.
dc.identifier.citedreferenceY. He, T. Day, T. S. Zhang, H. L. Liu, X. Shi, L. D. Chen, G. J. Snyder, Adv. Mater. 2014, 26, 3974.
dc.identifier.citedreferenceS. N. Guin, A. Chatterjee, D. S. Negi, R. Datta, K. Biswas, Energy Environ. Sci. 2013, 6, 2603.
dc.identifier.citedreferenceX. Lu, D. T. Morelli, Y. Xia, F. Zhou, V. Ozolins, H. Chi, X. Y. Zhou, C. Uher, Adv. Energy Mater. 2013, 3, 342.
dc.identifier.citedreferenceL. D. Zhao, S. H. Lo, Y. S. Zhang, H. Sun, G. J. Tan, C. Uher, C. Wolverton, V. P. Dravid, M. G. Kanatzidis, Nature 2014, 508, 373.
dc.identifier.citedreferenceL. D. Zhao, G. J. Tan, S. Q. Hao, J. Q. He, Y. L. Pei, H. Chi, H. Wang, S. K. Gong, H. B. Xu, V. P. Dravid, C. Uher, G. J. Snyder, C. Wolverton, M. G. Kanatzidis, Science 2016, 351, 141.
dc.identifier.citedreferenceJ. Li, H. Y. Guo, X. Zhang, M. G. Kanatzidis, J. Alloys Compd. 1995, 218, 1.
dc.identifier.citedreferenceK. Kurosaki, A. Kosuga, H. Muta, M. Uno, S. Yamanaka, Appl. Phys. Lett. 2005, 87, 061919.
dc.identifier.citedreferenceS. R. Brown, S. M. Kauzlarich, F. Gascoin, G. J. Snyder, Chem. Mater. 2006, 18, 1873.
dc.identifier.citedreferenceQ. S. Guo, M. C. Chan, B. A. Kuropatwa, H. Kleinke, Chem. Mater. 2013, 25, 4097.
dc.identifier.citedreferenceW. J. Xie, J. He, S. Zhu, T. Holgate, S. Y. Wang, X. F. Tang, Q. J. Zhang, T. M. Tritt, J. Mater. Res. 2011, 26, 1791.
dc.identifier.citedreferenceE. J. Skoug, J. D. Cain, D. T. Morelli, Appl. Phys. Lett. 2010, 96, 181905.
dc.identifier.citedreferenceD. T. Morelli, J. P. Heremans, G. A. Slack, Phys. Rev. B 2002, 66, 195304.
dc.identifier.citedreferenceM. Christensen, A. B. Abrahamsen, N. B. Christensen, F. Juranyi, N. H. Andersen, K. Lefmann, J. Andreasson, C. R. H. Bahl, B. B. Iversen, Nat. Mater. 2008, 7, 811.
dc.identifier.citedreferenceJ. Dong, O. F. Sankey, C. W. Myles, Phys. Rev. Lett. 2001, 86, 2361.
dc.identifier.citedreferenceT. Tadano, Y. Gohda, S. Tsuneyuki, Phys. Rev. Lett. 1996, 114, 095501.
dc.identifier.citedreferenceC. H. Lee, J. Phys. Soc. Jpn. 2006, 75, 123602.
dc.identifier.citedreferenceâ EXPGUI, a graphical user interface for GSASâ : B. H. Toby, J. Appl. Crystallogr. 2001, 34, 210.
dc.identifier.citedreferenceG. Kortüm, Reflectance Spectroscopy, Springer, Berlin, 1969.
dc.identifier.citedreferenceT. Ouyang, X. Zhang, M. Hu, Nanotechnology 2015, 26, 025702.
dc.identifier.citedreferenceB. C. Sales, B. C. Chakoumakos, D. Mandrus, J. W. Sharp, J. Solid State Chem. 1999, 146, 528.
dc.identifier.citedreferenceB. T. W. Willis, A. W. Pryor, Thermal Vibrations in Crystallography, Cambridge University Press, Cambridge, 1975.
dc.identifier.citedreferenceT. M. Tritt, Science 1999, 283, 804.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.