Show simple item record

Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF

dc.contributor.authorEllington, S. M.
dc.contributor.authorMoldwin, M. B.
dc.contributor.authorLiemohn, M. W.
dc.date.accessioned2016-10-17T21:19:21Z
dc.date.available2017-05-02T15:09:13Zen
dc.date.issued2016-03
dc.identifier.citationEllington, S. M.; Moldwin, M. B.; Liemohn, M. W. (2016). "Local time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF." Journal of Geophysical Research: Space Physics 121(3): 2033-2045.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134214
dc.description.abstractWe present evidence of resonant wave‐wave coupling via toroidal field line resonance (FLR) signatures in the Space Weather Modeling Framework’s (SWMF) global, terrestrial magnetospheric model in one simulation driven by a synthetic upstream solar wind with embedded broadband dynamic pressure fluctuations. Using in situ, stationary point measurements of the radial electric field along the 1500 LT meridian, we show that SWMF reproduces a multiharmonic, continuous distribution of FLRs exemplified by 180° phase reversals and amplitude peaks across the resonant L shells. By linearly increasing the amplitude of the dynamic pressure fluctuations in time, we observe a commensurate increase in the amplitude of the radial electric and azimuthal magnetic field fluctuations, which is consistent with the solar wind driver being the dominant source of the fast mode energy. While we find no discernible local time changes in the FLR frequencies despite large‐scale, monotonic variations in the dayside equatorial mass density, in selectively sampling resonant points and examining spectral resonance widths, we observe significant radial, harmonic, and time‐dependent local time asymmetries in the radial electric field amplitudes. A weak but persistent local time asymmetry exists in measures of the estimated coupling efficiency between the fast mode and toroidal wave fields, which exhibits a radial dependence consistent with the coupling strength examined by Mann et al. (1999) and Zhu and Kivelson (1988). We discuss internal structural mechanisms and additional external energy sources that may account for these asymmetries as we find that local time variations in the strength of the compressional driver are not the predominant source of the FLR amplitude asymmetries. These include resonant mode coupling of observed Kelvin‐Helmholtz surface wave generated Pc5 band ultralow frequency pulsations, local time differences in local ionospheric dampening rates, and variations in azimuthal mode number, which may impact the partitioning of spectral energy between the toroidal and poloidal wave modes.Key PointsDemonstrate ability of SWMF to produce FLRsShow local time asymmetries in FLR amplitudesSuggest plausible mechanisms for FLR amplitude asymmetries
dc.publisherWiley Periodicals, Inc.
dc.subject.otherfield line resonances
dc.subject.otherlocal time asymmetries
dc.subject.otherSWMF
dc.subject.otherglobal MHD modeling
dc.titleLocal time asymmetries and toroidal field line resonances: Global magnetospheric modeling in SWMF
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134214/1/jgra52417.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134214/2/jgra52417_am.pdf
dc.identifier.doi10.1002/2015JA021920
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceNosé, M., T. Iyemore, M. Sugiura, and J. A. Slavin ( 1995 ), A strong dawn/dusk asymmetry in Pc5 pulsation occurrence observed by the DE‐1 satellite, Geophys. Res. Lett., 22 ( 15 ), 2053 – 2056, doi: 10.1029/95GL01794.
dc.identifier.citedreferenceEngebretson, M. J., L. J. Zanetti, T. A. Potemra, W. Baumjohann, H. Lühr, and M. H. Acuna ( 1987 ), Simultaneous observation of Pc 3‐4 pulsations in the solar wind and in the Earth’s magnetosphere, J. Geophys. Res., 92 ( A9 ), 10,053 – 10,062, doi: 10.1029/JA092iA09p10053.
dc.identifier.citedreferenceFeinrich, F. R., and J. C. Samson ( 1997 ), Growth and decay of field line resonances, J. Geophys. Res., 102 ( A9 ), 20,031 – 20,039, doi: 10.1029/97JA01376.
dc.identifier.citedreferenceGlassmeier, K. H., and M. Stellmacher ( 2000 ), Concerning the local time asymmetry of Pc5 wave power at the ground and field line resonance widths, J. Geophys. Res., 105 ( A8 ), 18,847 – 18,855, doi: 10.1029/2000JA900037.
dc.identifier.citedreferenceHasegawa, A. ( 1969 ), Drift mirror instability in the magnetosphere, Phys. Fluids, 12, 2642 – 2650, doi: 10.1063/1.1692407.
dc.identifier.citedreferenceKivelson, M. G., and D. J. Southwood ( 1986 ), Coupling of global magnetospheric MHD eigenmodes to field line resonances, J. Geophys. Res., 91 ( A4 ), 4345 – 4351, doi: 10.1029/JA091iA04p04345.
dc.identifier.citedreferenceLee, D., and R. L. Lysak ( 1990 ), Effects of azimuthal asymmetry on ULF waves in the dipole magnetosphere, Geophys. Res. Lett., 17 ( 1 ), 53 – 56, doi: 10.1029/GL017i001p00053.
dc.identifier.citedreferenceLee, D.‐H, and R. L. Lysak ( 1989 ), Magnetospheric ULF wave coupling in the dipole model ‐ The impulsive excitation, J. Geophys. Res., 94, 17,097 – 17,103.
dc.identifier.citedreferenceLee, L. C., and J. V. Olson ( 1980 ), Kelvin‐Helmholtz instability and the variation of geomagnetic pulsation activity, Geophys. Res. Lett., 7 ( 10 ), 777 – 780.
dc.identifier.citedreferenceMann, I. R., A. N. Wright, and P. S. Cally ( 1995 ), Coupling of magnetospheric cavity modes to field line resonances: A study of resonance widths, J. Geophys. Res., 100 ( A10 ), 19,441 – 19,456, doi: 10.1029/95JA00820.
dc.identifier.citedreferenceMann, I. R., A. N. Wright, K. J. Mills, and V. M. Nakariakov ( 1999 ), Excitation of magnetospheric waveguide modes by magnetosheath flows, J. Geophys. Res., 104 ( A1 ), 333 – 353, doi: 10.1029/1998JA900026.
dc.identifier.citedreferenceNewton, R. S., D. J. Southwood, and W. J. Hughes ( 1978 ), Damping of geomagnetic pulsations by the ionosphere, Planet. Space Sci., 26 ( 3 ), 201 – 209, doi: 10.1016/0032‐0633(78)90085‐5.
dc.identifier.citedreferenceRadoski, H. R., and R. L. Carovillano ( 1966 ), Axisymmetric plasmasphere resonances: Toroidal mode, Phys. Fluids, 9 ( 2 ), 285, doi: 10.1063/1.1761671.
dc.identifier.citedreferenceSamson, J. C., B. G. Harrold, J. M. Ruohoniemi, R. A. Greenwald, and A. D. M. Walker ( 1992 ), Field line resonances associated with MHD waveguides in the magnetosphere, Geophys. Res. Lett., 19, 441 – 444.
dc.identifier.citedreferenceSarris, T. E., T. E. Sarris, A. N. Wright, and X. Li ( 2009 ), Observations and analysis of Alfvén wave phase mixing in the Earth’s magnetosphere, J. Geophys. Res., 114, A03218, doi: 10.1029/2008JA013606.
dc.identifier.citedreferenceSouthwood, D. J. ( 1974 ), Some features of field line resonances in the magnetosphere, Planet. Space Sci., 22, 483 – 491.
dc.identifier.citedreferenceStellmacher, M., K.‐H. Glassmeier, R. L. Lysak, and M. G. Kivelson ( 1997 ), Field line resonances in discretized magnetospheric models: An artifact study, Ann. Geophys., 15 ( 6 ), 614 – 624, doi: 10.1007/s00585‐997‐0614‐0.
dc.identifier.citedreferenceTakahashi, K., T. A. Potemra, R. W. McEntire, L. J. Zanetti, and L. M. Kistler ( 1988 ), Magnetospheric ULF waves observed during the major magnetospheric compression of November 1, 1984, J. Geophys. Res., 93, 14,369 – 14,382, doi: 10.1029/JA093iA12p14369.
dc.identifier.citedreferenceToth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.
dc.identifier.citedreferenceWright, A. N., and G. J. Rickard ( 1995 ), ULF pulsations driven by magnetopause motions: Azimuthal phase characteristics, J. Geophys. Res., 100 ( A12 ), 23,703 – 23,710, doi: 10.1029/95JA011765.
dc.identifier.citedreferenceZhu, X., and M. G. Kivelson ( 1988 ), Analytic formulation and quantitative solutions of the coupled ULF wave problem, J. Geophys. Res., 93 ( A8 ), 8602 – 8612, doi: 10.1029/JA093iA08p08602.
dc.identifier.citedreferenceBellan, P. M. ( 1996 ), Mode conversion into non‐MHD waves at the Alfvén layer: The case against the field line resonance concept, J. Geophys. Res., 101 ( A11 ), 24,887 – 24,898.
dc.identifier.citedreferenceBerube, D., M. B. Moldwin, and J. M. Weygand ( 2003 ), An automated method for the detection of field line resonance frequencies using ground magnetometer techniques, J. Geophys. Res., 108 ( A9 ), 1348, doi: 10.1029/2002JA009737.
dc.identifier.citedreferenceCheng, C. Z., and Q. Qian ( 1994 ), Theory of ballooning‐mirror instabilities for anisotropic pressure plasmas in the magnetosphere, J. Geophys. Res., 99 ( A6 ), 11,193 – 11,209, doi: 10.1029/94JA00657.
dc.identifier.citedreferenceChi, P. J., and C. T. Russell ( 1998 ), Phase skipping and Poynting flux of continuous pulsations, J. Geophys. Res., 103 ( A12 ), 29,479 – 29,491, doi: 10.1029/98JA02101.
dc.identifier.citedreferenceChisham, G., and D. Orr ( 1997 ), A statistical study of the local time asymmetry of Pc5 ULF wave characteristics observed at midlatitudes by SAMNET, J. Geophys. Res., 102 ( A11 ), 24,339 – 24,350, doi: 10.1029/97JA01801.
dc.identifier.citedreferenceClaudepierre, S. G., M. K. Hudson, W. Lotko, J. G. Lyon, and R. E. Denton ( 2010 ), Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations, J. Geophys. Res., 115, A11202, doi: 10.1029/2010JA015399.
dc.identifier.citedreferenceDegeling, A. W., R. Rankin, K. Kabin, I. J. Rae, and F. R. Fenrich ( 2010 ), Modeling ULF waves in a compressed dipole magnetic field, J. Geophys. Res., 115, A10212, doi: 10.1029/2010JA015410.
dc.identifier.citedreferenceElkington, S. R., M. K. Hudson, and A. A. Chan ( 1999 ), Acceleration of relativistic electrons via drift‐resonant interaction with toroidal‐mode Pc‐5 ULF oscillations, Geophys. Res. Lett., 26, 3273 – 3276.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.