Show simple item record

Post hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Caseâ Control Sequencing Studies

dc.contributor.authorLarson, Nicholas B.
dc.contributor.authorMcDonnell, Shannon
dc.contributor.authorAlbright, Lisa Cannon
dc.contributor.authorTeerlink, Craig
dc.contributor.authorStanford, Janet
dc.contributor.authorOstrander, Elaine A.
dc.contributor.authorIsaacs, William B.
dc.contributor.authorXu, Jianfeng
dc.contributor.authorCooney, Kathleen A.
dc.contributor.authorLange, Ethan
dc.contributor.authorSchleutker, Johanna
dc.contributor.authorCarpten, John D.
dc.contributor.authorPowell, Isaac
dc.contributor.authorBailey‐wilson, Joan
dc.contributor.authorCussenot, Olivier
dc.contributor.authorCancel‐tassin, Geraldine
dc.contributor.authorGiles, Graham
dc.contributor.authorMacInnis, Robert
dc.contributor.authorMaier, Christiane
dc.contributor.authorWhittemore, Alice S.
dc.contributor.authorHsieh, Chih‐lin
dc.contributor.authorWiklund, Fredrik
dc.contributor.authorCatolona, William J.
dc.contributor.authorFoulkes, William
dc.contributor.authorMandal, Diptasri
dc.contributor.authorEeles, Rosalind
dc.contributor.authorKote‐jarai, Zsofia
dc.contributor.authorAckerman, Michael J.
dc.contributor.authorOlson, Timothy M.
dc.contributor.authorKlein, Christopher J.
dc.contributor.authorThibodeau, Stephen N.
dc.contributor.authorSchaid, Daniel J.
dc.date.accessioned2016-10-17T21:19:22Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationLarson, Nicholas B.; McDonnell, Shannon; Albright, Lisa Cannon; Teerlink, Craig; Stanford, Janet; Ostrander, Elaine A.; Isaacs, William B.; Xu, Jianfeng; Cooney, Kathleen A.; Lange, Ethan; Schleutker, Johanna; Carpten, John D.; Powell, Isaac; Bailey‐wilson, Joan ; Cussenot, Olivier; Cancel‐tassin, Geraldine ; Giles, Graham; MacInnis, Robert; Maier, Christiane; Whittemore, Alice S.; Hsieh, Chih‐lin ; Wiklund, Fredrik; Catolona, William J.; Foulkes, William; Mandal, Diptasri; Eeles, Rosalind; Kote‐jarai, Zsofia ; Ackerman, Michael J.; Olson, Timothy M.; Klein, Christopher J.; Thibodeau, Stephen N.; Schaid, Daniel J. (2016). "Post hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Caseâ Control Sequencing Studies." Genetic Epidemiology 40(6): 461-469.
dc.identifier.issn0741-0395
dc.identifier.issn1098-2272
dc.identifier.urihttps://hdl.handle.net/2027.42/134215
dc.description.abstractRare variants (RVs) have been shown to be significant contributors to complex disease risk. By definition, these variants have very low minor allele frequencies and traditional singleâ marker methods for statistical analysis are underpowered for typical sequencing study sample sizes. Multimarker burdenâ type approaches attempt to identify aggregation of RVs across caseâ control status by analyzing relatively small partitions of the genome, such as genes. However, it is generally the case that the aggregative measure would be a mixture of causal and neutral variants, and these omnibus tests do not directly provide any indication of which RVs may be driving a given association. Recently, Bayesian variable selection approaches have been proposed to identify RV associations from a large set of RVs under consideration. Although these approaches have been shown to be powerful at detecting associations at the RV level, there are often computational limitations on the total quantity of RVs under consideration and compromises are necessary for largeâ scale application. Here, we propose a computationally efficient alternative formulation of this method using a probit regression approach specifically capable of simultaneously analyzing hundreds to thousands of RVs. We evaluate our approach to detect causal variation on simulated data and examine sensitivity and specificity in instances of high RV dimensionality as well as apply it to pathwayâ level RV analysis results from a prostate cancer (PC) risk caseâ control sequencing study. Finally, we discuss potential extensions and future directions of this work.
dc.publisherWiley Periodicals, Inc.
dc.publisherClarendon Press
dc.subject.otherMCMC
dc.subject.otherNextâ generation sequencing
dc.subject.otherburden testing
dc.subject.otherprostate cancer
dc.titlePost hoc Analysis for Detecting Individual Rare Variant Risk Associations Using Probit Regression Bayesian Variable Selection Methods in Caseâ Control Sequencing Studies
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGenetics
dc.subject.hlbsecondlevelMolecular, Cellular and Developmental Biology
dc.subject.hlbsecondlevelBiological Chemistry
dc.subject.hlbtoplevelHealth Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134215/1/gepi21983.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134215/2/gepi21983_am.pdf
dc.identifier.doi10.1002/gepi.21983
dc.identifier.sourceGenetic Epidemiology
dc.identifier.citedreferenceNelson MR, Wegmann D, Ehm MG, Kessner D, St Jean P, Verzilli C, Shen J, Tang Z, Bacanu SA, Fraser D and others. 2012. An abundance of rare functional variants in 202 drug target genes sequenced in 14,002 people. Science 337 ( 6090 ): 100 â 104.
dc.identifier.citedreferenceAlbert JH, Chib S. 1993. Bayesianâ analysis of binary and polychotomous response data. J Am Stat Assoc 88 ( 422 ): 669 â 679.
dc.identifier.citedreferenceBansal V, Libiger O, Torkamani A, Schork NJ. 2010. Statistical analysis strategies for association studies involving rare variants. Nat Rev Genet 11 ( 11 ): 773 â 85.
dc.identifier.citedreferenceBaragatti M. 2011. Bayesian variable selection for probit mixed models applied to gene selection. Bayesian Anal 6 ( 2 ): 209 â 229.
dc.identifier.citedreferenceCirulli ET, Goldstein DB. 2010. Uncovering the roles of rare variants in common disease through wholeâ genome sequencing. Nat Revi Genet 11 ( 6 ): 415 â 425.
dc.identifier.citedreferenceDePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, del Angel G, Rivas MA, Hanna M and others. 2011. A framework for variation discovery and genotyping using nextâ generation DNA sequencing data. Nat Genet 43 ( 5 ): 491 â 498.
dc.identifier.citedreferenceDering C, Hemmelmann C, Pugh E, Ziegler A. 2011. Statistical analysis of rare sequence variants: an overview of collapsing methods. Genet Epidemiol 35: S12 â S17.
dc.identifier.citedreferenceGelfand AE, Smith AFM, Lee TM. 1992. Bayesianâ analysis of constrained parameter and truncated data problems using Gibbs sampling. Am Stat Assoc 87 ( 418 ): 523 â 532.
dc.identifier.citedreferenceHastings WK. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57 ( 1 ): 97 â 109.
dc.identifier.citedreferenceHuang C, Freter C. 2015. Lipid metabolism, apoptosis and cancer therapy. Int J Mol Sci 16 ( 1 ): 924 â 949.
dc.identifier.citedreferenceJeffreys H. 1961. Theory of probability. Oxford: Clarendon Press.
dc.identifier.citedreferenceJohnson AA, Jones GL, Neath RC. 2013. Componentâ wise Markov chain Monte Carlo: uniform and geometric ergodicity under mixing and composition. Stat Sci 28 ( 3 ): 360 â 375.
dc.identifier.citedreferenceJoshiâ Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L and others. 2005. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33 (Database Issue): D428 â D432.
dc.identifier.citedreferenceKanehisa M. 2002. The KEGG database. Novartis Found Sympo 247: 91 â 101; discussion 101â 103, 119â 128, 244â 252.
dc.identifier.citedreferenceKang G, Bi W, Zhao Y, Zhang JF, Yang JJ, Xu H, Loh ML, Hunger SP, Relling MV, Pounds S and others. 2014. A new system identification approach to identify genetic variants in sequencing studies for a binary phenotype. Hum Hered 78 ( 2 ): 104 â 116.
dc.identifier.citedreferenceLee KE, Sha NJ, Dougherty ER, Vannucci M, Mallick BK. 2003. Gene selection: a Bayesian variable selection approach. Bioinformatics 19 ( 1 ): 90 â 97.
dc.identifier.citedreferenceLee KJ, Jones GL, Caffo BS, Bassett SS. 2014. Spatial bayesian variable selection models on functional magnetic resonance imaging timeâ series data. Bayesian Anal 9 ( 3 ): 699 â 732.
dc.identifier.citedreferenceLee S, Emond MJ, Bamshad MJ, Barnes KC, Rieder MJ, Nickerson DA, Christiani DC, Wurfel MM, Lin X. 2012. Optimal unified approach for rareâ variant association testing with application to smallâ sample caseâ control wholeâ exome sequencing studies. Am J Hum Genet 91 ( 2 ): 224 â 237.
dc.identifier.citedreferenceLeonâ Novelo L, Moreno E, Casella G. 2012. Objective Bayes model selection in probit models. Stat Med 31 ( 4 ): 353 â 365.
dc.identifier.citedreferenceLi B, Leal SM. 2008. Methods for detecting associations with rare variants for common diseases: application to analysis of sequence data. Am J Hum Genet 83 ( 3 ): 311 â 321.
dc.identifier.citedreferenceLiang FM, Xiong MM. 2013. Bayesian detection of causal rare variants under posterior consistency. PloS One 8 ( 7 ): e69633.
dc.identifier.citedreferenceLiu JS. 1994. The collapsed Gibbs sampler in Bayesian computations with applications to a geneâ regulation problem. J Am Stat Assoc 89 ( 427 ): 958 â 966.
dc.identifier.citedreferenceLiu JS. 1996. Peskun’s theorem and a modified discreteâ state Gibbs sampler. Biometrika 83 ( 3 ): 681 â 682.
dc.identifier.citedreferenceLogsdon BA, Dai JY, Auer PL, Johnsen JM, Ganesh SK, Smith NL, Wilson JG, Tracy RP, Lange LA, Jiao S and others. 2014. A variational Bayes discrete mixture test for rare variant association. Genet Epidemiol 38 ( 1 ): 21 â 30.
dc.identifier.citedreferenceMcKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M and others. 2010. The genome analysis toolkit: a MapReduce framework for analyzing nextâ generation DNA sequencing data. Genome Res 20 ( 9 ): 1297 â 1303.
dc.identifier.citedreferenceNeale BM, Rivas MA, Voight BF, Altshuler D, Devlin B, Orhoâ Melander M, Kathiresan S, Purcell SM, Roeder K, Daly MJ. 2011. Testing for an unusual distribution of rare variants. Plos Genet 7 ( 3 ): e1001322.
dc.identifier.citedreferenceO’Hara RB, Sillanpaa MJ. 2009. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal 4 ( 1 ): 85 â 117.
dc.identifier.citedreferencePeltola T, Marttinen P, Vehtari A. 2012. Finite adaptation and multistep moves in the Metropolisâ Hastings algorithm for variable selection in genomeâ wide association analysis. PloS One 7 ( 11 ): e49445.
dc.identifier.citedreferencePritchard JK. 2001. Are rare variants responsible for susceptibility to complex diseases? Am J Hum Genet 69 ( 1 ): 124 â 137.
dc.identifier.citedreferenceQuintana MA, Berstein JL, Thomas DC, Conti DV. 2011. Incorporating model uncertainty in detecting rare variants: the Bayesian risk index. Genet Epidemiol 35 ( 7 ): 638 â 649.
dc.identifier.citedreferenceQuintana MA, Conti DV. 2013. Integrative variable selection via Bayesian model uncertainty. Stat Med 32 ( 28 ): 4938 â 4953.
dc.identifier.citedreferenceShi MH, Dunson DB. 2011. Bayesian variable selection via particle stochastic search. Stat Probab Lett 81 ( 2 ): 283 â 291.
dc.identifier.citedreferenceTanner MA, Wing HW. 1987. The calculation of posterior distributions by data augmentationâ rejoinder. J Am Stat Assoc 82 ( 398 ): 548 â 550.
dc.identifier.citedreferenceThomson PA, Parla JS, McRae AF, Kramer M, Ramakrishnan K, Yao J, Soares DC, McCarthy S, Morris SW, Cardone L and others. 2014. 708 Common and 2010 rare DISC1 locus variants identified in 1542 subjects: analysis for association with psychiatric disorder and cognitive traits. Mol Psychiatry 19 ( 6 ): 668 â 675.
dc.identifier.citedreferenceVan der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levyâ Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J and others. 2013. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinformatics 43: 11.10.1 â 33.
dc.identifier.citedreferenceWilson MA, Iversen ES, Clyde MA, Schmidler SC, Schildkraut JM. 2010. Bayesian model search and multilevel inference for SNP association studies. Ann Appl Stat 4 ( 3 ): 1342 â 1364.
dc.identifier.citedreferenceWu G, Zhi D. 2013. Pathwayâ based approaches for sequencingâ based genomeâ wide association studies. Genet Epidemiol 37 ( 5 ): 478 â 494.
dc.identifier.citedreferenceWu MC, Lee S, Cai TX, Li Y, Boehnke M, Lin XH. 2011. Rareâ variant association testing for sequencing data with the sequence kernel association test. Am J Hum Genet 89 ( 1 ): 82 â 93.
dc.identifier.citedreferenceYang AJ, Song XY. 2010. Bayesian variable selection for disease classification using gene expression data. Bioinformatics 26 ( 2 ): 215 â 222.
dc.identifier.citedreferenceZellner A. 1983. Applications of Bayesianâ analysis in econometrics. Statistician 32 ( 1â 2 ): 23 â 34.
dc.identifier.citedreferenceZhou H, Sehl ME, Sinsheimer JS, Lange K. 2010. Association screening of common and rare genetic variants by penalized regression. Bioinformatics 26 ( 19 ): 2375 â 2382.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.