Show simple item record

Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSA‐ENLIL + Cone model

dc.contributor.authorDewey, R. M.
dc.contributor.authorBaker, D. N.
dc.contributor.authorMays, M. L.
dc.contributor.authorBrain, D. A.
dc.contributor.authorJakosky, B. M.
dc.contributor.authorHalekas, J. S.
dc.contributor.authorConnerney, J. E. P.
dc.contributor.authorOdstrcil, D.
dc.contributor.authorLuhmann, J. G.
dc.contributor.authorLee, C. O.
dc.date.accessioned2016-10-17T21:19:25Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationDewey, R. M.; Baker, D. N.; Mays, M. L.; Brain, D. A.; Jakosky, B. M.; Halekas, J. S.; Connerney, J. E. P.; Odstrcil, D.; Luhmann, J. G.; Lee, C. O. (2016). "Continuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSA‐ENLIL + Cone model." Journal of Geophysical Research: Space Physics 121(7): 6207-6222.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134218
dc.description.abstractKnowledge of solar wind conditions at Mars is often necessary to study the planet’s magnetospheric and ionospheric dynamics. With no continuous upstream solar wind monitor at Mars, studies have used a variety of methods to measure or predict Martian solar wind conditions. In situ measurements, when available, are preferred, but can often be limited in continuity or scope, and so studies have also utilized solar wind proxies, spacecraft flybys, and Earth‐Mars alignment to provide solar wind context. Despite the importance of solar wind knowledge and the range of methods used to provide it, the use of solar wind models remains relatively unutilized. This study uses the Wang‐Sheeley‐Arge (WSA)‐ENLIL + Cone solar wind model to calculate solar wind parameters at Mars’ orbital location to provide a new approach to determining solar wind conditions at Mars. Comparisons of the model results with observations by the MAVEN spacecraft indicate that the WSA‐ENLIL + Cone model can forecast solar wind conditions at Mars as accurately as it has predicted them historically at the Earth, although at Mars the model systematically mispredicts solar wind speed and density, likely a result of magnetogram calibration. Particular focus is placed on modeling the early March 2015 interplanetary coronal mass ejections (ICMEs) that interacted with Mars. Despite the complexity of the ICMEs, the model accurately predicted the speed and arrival time of the ICME‐driven interplanetary shock, although it underpredicted other solar wind parameters. These results suggest that solar wind models can be used to provide the necessary general context of the heliospheric conditions to planetary studies.Key PointsThe WSA‐ENLIL + Cone model provides continuous, generally accurate solar wind conditions at MarsThe WSA‐ENLIL + Cone model captures both background and disturbed solar wind conditions accuratelyThese continuous solar wind parameters can provide context to planetary and magnetospheric studies
dc.publisherWiley Periodicals, Inc.
dc.publisherAm. Inst. of Phys.
dc.subject.otherMars
dc.subject.otherMAVEN
dc.titleContinuous solar wind forcing knowledge: Providing continuous conditions at Mars with the WSA‐ENLIL + Cone model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134218/1/jgra52721_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134218/2/jgra52721.pdf
dc.identifier.doi10.1002/2015JA021941
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceNajib, D., A. F. Nagy, G. Tóth, and Y. Ma ( 2011 ), Three‐dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars, J. Geophys. Res., 116, A05204, doi: 10.1029/2010JA016272.
dc.identifier.citedreferenceLundin, R., S. Barabash, A. Fedorov, M. Holmström, H. Nilsson, J.‐A. Sauvaud, and M. Yamauchi ( 2008 ), Solar forcing and planetary ion escape from Mars, Geophys. Res. Lett., 35, L09203, doi: 10.1029/2007GL032884.
dc.identifier.citedreferenceMa, Y., A. F. Nagy, I. V. Sokolov, and K. C. Hansen ( 2004 ), Three‐dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars, J. Geophys. Res., 109, A07211, doi: 10.1029/2003JA010367.
dc.identifier.citedreferenceMays, M. L., et al. ( 2015 ), Ensemble modeling of CMEs using the WSA‐ENLIL + Cone model, Sol. Phys, doi: 10.1007/s11207-015-0692-1.
dc.identifier.citedreferenceMcKenna‐Lawlor, S. M. P., et al. ( 2008 ), Predicting interplanetary shock arrivals at Earth, Mars, and Venus: A real‐time modeling experiment following the solar flares of 5–14 December 2006, J. Geophys. Res., 113, A06101, doi: 10.1029/2007JA012577.
dc.identifier.citedreferenceMillward, G., D. Biesecker, V. Pizzo, and C. A. de Koning ( 2013 ), An operational solftware tool for the analysis of coronagraph images: Determining CME parameters for input into the WSA‐Enlil heliospheric model, Space Weather, 11, 57 – 68, doi: 10.1002/swe.20024.
dc.identifier.citedreferenceNilsson, H., E. Carlsson, D. A. Brain, M. Yamauchi, M. Holmström, S. Barabash, R. Lundin, and Y. Futaana ( 2010 ), Ion escape from Mars as a function of solar wind conditions: A statistical study, Icarus, 206, 40 – 49, doi: 10.1016/j.icarus.2009.03.006.
dc.identifier.citedreferenceOdstrcil, D. ( 2003 ), Modeling 3‐D solar wind structure, Adv. Space Res., 32, 497 – 506, doi: 10.1016/S0273-1177(03)00332-6.
dc.identifier.citedreferenceOpgenoorth, H. J., D. J. Andrews, M. Fränz, M. Lester, N. J. T. Edberg, D. Morgan, F. Duru, O. Witasse, and A. O. Williams ( 2013 ), Mars ionospheric response to solar wind variability, J. Geophys. Res. Space Physics, 118, 6558 – 6587, doi: 10.1002/jgra.50537.
dc.identifier.citedreferencePizzo, V., G. Millward, A. Parsons, D. Biesecker, S. Hill, and D. Odstrcil ( 2011 ), Wang‐Sheeley‐Arge‐ENLIL cone model transitions to operations, Space Weather, 9, S033004, doi: 10.1029/2011SW000663.
dc.identifier.citedreferenceSchatten, K. H., J. M. Wilcox, and N. F. Ness ( 1969 ), A model of interplanetary and coronal magnetic fields, Sol. Phys., 6, 442 – 455, doi: 10.1007/BF00146478.
dc.identifier.citedreferenceTóth, G., and D. Odstrcil ( 1996 ), Comparison of some flux corrected transport and total variation diminishing numerical schemes for hydrodynamic and magnetohydrodynamic problems, J. Comput. Phys., 128, 82 – 100, doi: 10.1006/jcph.1996.0197.
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space Weather Modeling Framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comp. Phys., 231, 870, doi: 10.1016/j.jcp.2011.02.006.
dc.identifier.citedreferenceVennerstrom, N. Olsen, M. Purucker, M. H. A., and J. C. Cain ( 2003 ), The magnetic field in the pile‐up region at Mars, and its variation with the solar wind, Geophys. Res. Lett., 30, 1369, doi: 10.1029/2003GL016883.
dc.identifier.citedreferenceWang, Y.‐M., and N. R. Sheeley Jr. ( 1992 ), On potential field models of the solar corona, Astrophys. J., 392, 310 – 319.
dc.identifier.citedreferenceWei, Y., et al. ( 2012 ), Enhanced atmospheric oxygen outflow on Earth and Mars driven by a corotating interaction region, J. Geophys. Res., 117, A03208, doi: 10.1029/2011JA017340.
dc.identifier.citedreferenceWu, C.‐C., M. Dryer, S. T. Wu, B. E. Wood, C. D. Fry, K. Liou, and S. Plunkett ( 2011 ), Global three‐dimensional simulation of the interplanetary evolution of the observed geoeffective coronal mass ejection during the epoch 1–4 August 2010, J. Geophys. Res., 116, A12103, doi: 10.1029/2011JA016947.
dc.identifier.citedreferenceWu, C.‐C., K. Liou, A. Vourlidas, S. Plunkett, M. Dryer, S. T. Wu, and R. A. Mewaldt ( 2016a ), Global magnetohydrodynamic simulation of the 15 March 2013 coronal mass ejection event—Interpretation of the 30–80 MeV proton flux, J. Geophys. Res. Space Physics, 121, 56 – 76, doi: 10.1002/2015JA021051.
dc.identifier.citedreferenceWu, C.‐C., K. Liou, A. Vourlidas, S. Plunkett, M. Dryer, S. T. Wu, D. Socker, B. E. Wood, L. Hutting, and R. A. Howard ( 2016b ), Numerical simulation of multiple CME‐driven shocks in the month of 2011 September, J. Geophys. Res. Space Physics, 121, 1839 – 1856, doi: 10.1002/2015JA021843.
dc.identifier.citedreferenceWu, S. T., Y. Zhou, C. Jiang, X. Feng, C.‐C. Wu, and Q. Hu ( 2016 ), A data‐constrained three‐dimensional magnetohydrodynamic simulation model for a coronal mass ejection initiation, J. Geophys. Res. Space Physics, 121, 1009 – 1023, doi: 10.1002/2015JA021615.
dc.identifier.citedreferenceXie, H., L. Ofman, and G. Lawrence ( 2004 ), Cone model for halo CMEs: Applications to space weather forecasting, J. Geophys. Res., 109, A03109, doi: 10.1029/2003JA010226.
dc.identifier.citedreferenceXie, H., D. Odstrcil, L. Mays, O. C. S. Cyr, N. Gopalswamy, and H. Cremades ( 2012 ), Understanding shock dynamics in the inner heliosphere with modeling and Type II radio data: The 2010‐04‐03 event, J. Geophys. Res., 117, A04105, doi: 10.1029/2011JA017304.
dc.identifier.citedreferenceYang, L. P., X. S. Feng, C. Q. Xiang, Y. Liu, X. Zhao, and S. T. Wu ( 2012 ), Time‐dependent MHD modeling of the global solar corona for year 2007: Driven by daily‐updated magnetic field synoptic data, J. Geophys. Res., 117, A08110, doi: 10.1029/2011JA017494.
dc.identifier.citedreferenceYang, L., X. Feng, C. Xiang, S. Zhang, and S. T. Wu ( 2011 ), Simulation of the unusual solar minimum with 3D SIP‐CESE MHD model by comparison with multi‐satellite observations, Sol. Phys., 271, doi: 10.1007/s11207-011-9785-7.
dc.identifier.citedreferenceZhao, X. P., S. P. Plunkett, and W. Liu ( 2002 ), Determination of geometrical and kinematical properties of halo coronal mass ejections using the cone model, J. Geophys. Res., 107 ( A8 ), 1223, doi: 10.1029/2001JA009143.
dc.identifier.citedreferenceArge, C. N., and V. J. Pizzo ( 2000 ), Improvement in the prediction of SW conditions using near‐real‐time solar magnetic field updates, J. Geophys. Res., 105, 10,465 – 10,479, doi: 10.1029/1999JA000262.
dc.identifier.citedreferenceArge, C. N., J. G. Luhmann, D. Odstrcil, C. J. Schrijver, and Y. Li ( 2004 ), Stream structure and coronal sources of the solar wind during the May 12th, 1997 CME, J. Atmos. Sol. Terr. Phys., 66, 1295 – 1309.
dc.identifier.citedreferenceArge, C. N., Henney, C. J., Koller, J., Compeau, C. R., Young, S., MacKenzie, D., Fay, A., and Harvey, J. W. ( 2010 ), Air Force Data Assimilative Photospheric Flux Transport (ADAPT) model, in AIP Conf. Proc., vol. 1216, pp. 343 – 346, Am. Inst. of Phys., Melville, New York, doi: 10.1063/1.3395870.
dc.identifier.citedreferenceBaker, D. N., et al. ( 2013 ), Solar wind forcing at Mercury: WSA‐ENLIL model results, J. Geophys. Res. Space Physics, 118, 45 – 57, doi: 10.1029/2012JA018064.
dc.identifier.citedreferenceBrain, D. A. ( 2006 ), Mars Global Surveyor measurements of the Martian solar wind interaction, Space Sci. Rev., 126, 77 – 112, doi: 10.1007/s11214-006-9122-x.
dc.identifier.citedreferenceBrain, D. A., J. S. Halekas, R. J. Lillis, D. L. Mitchell, R. P. Lin, and D. H. Crider ( 2005 ), Variability of the altitude of the Martian sheath, Geophys. Res. Lett., 32, L18203, doi: 10.1029/2005GL023126.
dc.identifier.citedreferenceBrain, D. A., R. J. Lillis, D. L. Mitchell, J. S. Halekas, and R. P. Lin ( 2007 ), Electron pitch angle distributions as indicators of magnetic field topology near Mars, J. Geophys. Res., 112, A09201, doi: 10.1029/2007JA012435.
dc.identifier.citedreferenceBrain, D. A., A. H. Baker, J. Briggs, J. P. Eastwood, J. S. Halekas, and T.‐D. Phan ( 2010a ), Episodic detachment of Martian crustal magnetic fields leading to bulk atmospheric plasma escape, Geophys. Res. Lett., 37, L14108, doi: 10.1029/2010GL043916.
dc.identifier.citedreferenceBrain, D., et al. ( 2010b ), A comparison of global models for the solar wind interaction with Mars, Icarus, 206, 149 – 151, doi: 10.1016/j.icarus.2009.06.030.
dc.identifier.citedreferenceSchatten, K. H. ( 1971 ), Current sheet magnetic model for the solar corona, Cosm. Electrodyn., 2, 232 – 245.
dc.identifier.citedreferenceBriggs, J. A., D. A. Brain, M. L. Cartwright, J. P. Eastwood, and J. S. Halekas ( 2011 ), A statistical study of flux ropes in the Martian magnetosphere, Planet. Space Sci., 59, 1498 – 1505, doi: 10.1016/j.pss.2011.06.010.
dc.identifier.citedreferenceConnerney, J. E. P., J. Espley, P. Lawton, S. Murphy, J. Odom, R. Oliverson, and D. Sheppard ( 2015a ), The MAVEN magnetic field investigation, Space Sci. Rev., 169, doi: 10.1007/s11214-015-0169-4.
dc.identifier.citedreferenceConnerney, J. E. P., J. R. Espley, G. A. DiBraccio, J. R. Gruesbeck, R. J. Oliversen, D. L. Mitchell, J. Haleskas, C. Mazelle, D. Brain, and B. M. Jakosky ( 2015b ), First results of the MAVEN magnetic field investigation, Geophys. Res. Lett., 42, 8819 – 8827, doi: 10.1002/2015GL065366.
dc.identifier.citedreferenceCrider, D. H., D. Vignes, A. M. Krymskii, T. K. Breus, N. F. Ness, D. L. Mitchell, J. A. Slavin, and M. H. Acuña ( 2003 ), A proxy for determining solar wind dynamic pressure at Mars using Mars Global Surveyor data, J. Geophys. Res., 108 ( A12 ), 1461, doi: 10.1029/2003JA009875.
dc.identifier.citedreferenceDewey, R. M., et al. ( 2015 ), Improving solar wind modeling at Mercury: Incorporating transient solar phenomena into the WSA‐ENLIL model with the Cone extension, J. Geophys. Res. Space Physics, 120, 5667 – 5685, doi: 10.1002/2015JA021194.
dc.identifier.citedreferenceDubinin, E., et al. ( 2008 ), Structure and dynamics of the solar wind/ ionosphere interface on Mars: MEX‐ASPERA‐3 and MEX‐MARSIS observations, Geophys. Res. Lett., 35, L11103, doi: 10.1029/2008GL033730.
dc.identifier.citedreferenceDubinin, E., M. Fränz, J. Woch, F. Duru, D. Gurnett, R. Modolo, S. Barabash, and R. Lundin ( 2009 ), Ionospheric storms on Mars: Impact of the corotating interaction region, Geophys. Res. Lett., 360, L01105, doi: 10.1029/2008GL036559.
dc.identifier.citedreferenceDubinin, E., M. Fränz, A. Fedorov, R. Lundin, N. Edberg, F. Duru, and O. Vaisberg ( 2011 ), Ion energization and escape on Mars and Venus, Space Sci. Rev., 162, 173 – 211, doi: 10.1007/s11214-011-9831-7.
dc.identifier.citedreferenceEastwood, J. P., D. A. Brain, J. S. Halekas, J. F. Drake, T. D. Phan, M. Øieroset, D. L. Mitchell, R. P. Lin, and M. Acuña ( 2008 ), Evidence for collisionless magnetic reconnection at Mars, Geophys. Res. Lett., 35, L02106, doi: 10.1029/2007GL032289.
dc.identifier.citedreferenceEastwood, J. P., J. J. H. Videira, D. A. Brain, and J. S. Halekas ( 2012 ), A chain of magnetic flux ropes in the magnetotail of Mars, Geophys. Res. Lett., 39, L03104, doi: 10.1029/2011GL050444.
dc.identifier.citedreferenceEdberg, N. J. T., et al. ( 2009a ), Rosetta and Mars Express observations of the influence of high solar wind pressure on the Martian plasma environment, Ann. Geophys., 27, 4533 – 4545, doi: 10.5194/angeo-27-4533-2009.
dc.identifier.citedreferenceEdberg, N. J. T., D. A. Brain, M. Lester, S. W. H. Cowley, R. Modolo, M. Fränz, and S. Barabash ( 2009b ), Plasma boundary variability at Mars as observed by Mars Global Surveyor and Mars Express, Ann. Geophys., 27, 3537 – 3550, doi: 10.5194/angeo-27-3537-2009.
dc.identifier.citedreferenceEdberg, N. J. T., H. Nilsson, A. O. Williams, M. Lester, S. E. Milan, S. W. H. Cowley, M. Fränz, S. Barabash, and Y. Futaana ( 2010 ), Pumping out the atmosphere of Mars through solar wind pressure pulses, Geophys. Res. Lett., 370, L03107, doi: 10.1029/2009GL041814.
dc.identifier.citedreferenceFalkenberg, T. V., S. Vennerstrom, D. A. Brain, G. Delory, and A. Taktakishvili ( 2011a ), Multipoint observations of coronal mass ejection and solar energetic particle events on Mars and Earth during November 2001, J. Geophys. Res., 116, A06104, doi: 10.1029/2010JA016279.
dc.identifier.citedreferenceFalkenberg, T. V., A. Taktakishvili, A. Pulkkinen, S. Vennerstrom, D. Odstrcil, D. Brain, G. Delory, and D. Mitchell ( 2011b ), Evaluating predictions of ICME arrival at Earth and Mars, Space Weather, 9, S00E12, doi: 10.1029/2011SW000682.
dc.identifier.citedreferenceFeng, X., S. Zhang, C. Xiang, L. Yang, C. Jiang, and S. T. Wu ( 2011 ), A hybrid solar wind model of the CESE + HLL method with a Yin‐Yang overset grid and an AMR grid, Astrophys. J., 734, doi: 10.1088/0004-637X/734/1/50.
dc.identifier.citedreferenceFeng, X., L. Yang, C. Xiang, C. Jiang, X. Ma, S. T. Wu, D. Zhong, and Y. Zhou ( 2012 ), Validation of the 3D AMR SIP‐CESE solar wind model for four Carrington rotations, Sol. Phys., 279, doi: 10.1007/s11207-012-9969-9.
dc.identifier.citedreferenceFeng, X., M. Zhang, and Y. Zhou ( 2014 ), A new three‐dimensional solar wind model in spherical coordinates with a six‐component grid, Astrophys. J., 214, doi: 10.1088/0067-0049/214/1/6.
dc.identifier.citedreferenceFerguson, B. B., J. C. Cain, D. H. Crider, D. A. Brain, and E. M. Harnett ( 2005 ), External fields on the nightside of Mars at Mars Global Surveyor mapping altitudes, Geophys. Res. Lett., 32, L16105, doi: 10.1029/2004GL021964.
dc.identifier.citedreferenceGressl, C., A. M. Veronig, M. Temmer, D. Odstrcil, J. A. Linker, Z. Mikić, and P. Riley ( 2014 ), Comparative study of MHD modeling of the background solar wind, Sol. Phys., 289, 1783 – 1801, doi: 10.1007/s11207-013-0421-6.
dc.identifier.citedreferenceHaider, S. A., K. K. Mahajan, and E. Kallio ( 2011 ), Mars ionosphere: A review of experimental results and modeling studies, Rev. Geophys., 49, RG4001, doi: 10.1029/2011RG000357.
dc.identifier.citedreferenceHakamada, K., and S.‐I. Akasofu ( 1982 ), Simulation of three‐dimensional solar wind disturbances and resulting geomagnetic storms, Space Sci. Rev., 31, 3 – 70, doi: 10.1007/BF00349000.
dc.identifier.citedreferenceHalekas, J. S., J. P. Eastwood, D. A. Brain, T. D. Phan, M. Øieroset, and R. P. Lin ( 2009 ), In situ observations of reconnection Hall magnetic fields at Mars: Evidence for ion diffusion region encounters, J. Geophys. Res., 114, A11204, doi: 10.1029/2009JA014544.
dc.identifier.citedreferenceHalekas, J. S., E. R. Taylor, G. Dalton, G. Johnson, D. W. Curtis, J. P. McFadden, D. L. Mitchell, R. P. Lin, and B. M. Jakosky ( 2013 ), The Solar Wind Ion Analyzer for MAVEN, Space Sci. Rev., doi: 10.1007/s11214-013-0029-z.
dc.identifier.citedreferenceHarten, A. ( 1983 ), High resolution schemes for hyperbolic conservation laws, J. Comp. Phys., 49, 357 – 393, doi: 10.1016/0021-9991(83)90136-5.
dc.identifier.citedreferenceHarvey, J. W., et al. ( 1996 ), The Global Oscillation Network Group (GONG) Project, Science, 272, 1284 – 1286, doi: 10.1126/science.272.5266.1284.
dc.identifier.citedreferenceHayashi, K. ( 2012 ), An MHD simulation model of time‐dependent co‐rotating solar wind, J. Geophys. Res., 117, A08105, doi: 10.1029/2011JA017490.
dc.identifier.citedreferenceIntriligator, D. S., W. Sun, M. Dryer, J. Intriligator, C. Deehr, T. Detman, and W. R. Webber ( 2015a ), Did the July 2012 solar events cause a “tsunami” throughout the heliosphere, heliosheath, and into the interstellar medium?, J. Geophys. Res. Space Physics, 120, 8267 – 8280, doi: 10.1002/2015JA021406.
dc.identifier.citedreferenceIntriligator, D. S., W. Sun, W. D. Miller, M. Dryer, C. Deehr, W. R. Webber, J. M. Intriligator, and T. M. Detman ( 2015b ), Modelling the March 2012 solar events and their impacts at Voyager 1 in the vicinity of the heliopause, J. Phys. Conf. Ser., 577, doi: 10.1088/1742-6596/577/1/012013.
dc.identifier.citedreferenceJakosky, B. M., et al. ( 2015a ), MAVEN observations of the response of Mars to an interplanetary coronal mass ejection from the Sun, Science, 350, doi: 10.1126/science.aad0210.
dc.identifier.citedreferenceJakosky, B. M., et al. ( 2015b ), The Mars Atmosphere and Volatile Evolution (MAVEN) mission, Space Sci. Rev., doi: 10.1007/s11214-015-0139-x.
dc.identifier.citedreferenceJian, L. K., C. T. Russell, J. G. Luhmann, P. J. MacNeice, D. Odstrcil, P. Riley, J. A. Linker, R. M. Skoug, and J. T. Steinberg ( 2011 ), Comparison of observations at ACE and Ulysses with ENLIL model results: Stream interaction regions during Carrington rotations 2016–2018, Sol. Phys., 273, 179 – 203, doi: 10.1007/s11207-011-9858-7.
dc.identifier.citedreferenceJian, L. K., P. J. MacNeice, A. Taktakishvili, D. Odstrcil, B. Jackson, H.‐S. Yu, P. Riley, I. V. Sokolov, and R. M. Evans ( 2015 ), Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC, Space Weather, 13, 316 – 338, doi: 10.1002/2015SW001174.
dc.identifier.citedreferenceLee, C. O., J. G. Luhmann, D. Odstrcil, P. J. MacNeice, I. de Pater, P. Riley, and C. N. Arge ( 2009 ), The solar wind at 1 AU during the declining phase of solar cycle 23: Comparison of 3D numerical model results with observations, Sol. Phys., 254, 115 – 183, doi: 10.1007/s11207-008-9280-y.
dc.identifier.citedreferenceLee, C. O., C. N. Arge, D. Odstrcil, G. Millward, V. Pizzo, J. M. Quinn, and C. J. Henney ( 2013 ), Ensemble modeling of CME propagation, Sol. Phys., 285, 349 – 368, doi: 10.1007/s11207-012-9980-1.
dc.identifier.citedreferenceLee, C. O., N. Arge, D. Odstrcil, G. Millward, V. Pizzo, and N. Lugaz ( 2015 ), Ensemble modeling of successive halo CMEs: A case study, Sol. Phys., 290, 1207 – 1229, doi: 10.1007/s11207-015-0667-2.
dc.identifier.citedreferenceLiou, K., C.‐C. Wu, M. Dryer, S.‐T. Wu, N. Rich, S. Plunkett, L. Simpson, C. D. Fry, and K. Schenk ( 2014 ), Global simulation of extremely fast coronal mass ejection on 23 July 2012, J. Atmos. Sol. Terr. Phys., 121, doi: 10.1016/j.jastp.2014.09.013.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.