Show simple item record

Using satellite‐derived optical thickness to assess the influence of clouds on terrestrial carbon uptake

dc.contributor.authorCheng, S. J.
dc.contributor.authorSteiner, A. L.
dc.contributor.authorHollinger, D. Y.
dc.contributor.authorBohrer, G.
dc.contributor.authorNadelhoffer, K. J.
dc.date.accessioned2016-10-17T21:19:41Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07
dc.identifier.citationCheng, S. J.; Steiner, A. L.; Hollinger, D. Y.; Bohrer, G.; Nadelhoffer, K. J. (2016). "Using satellite‐derived optical thickness to assess the influence of clouds on terrestrial carbon uptake." Journal of Geophysical Research: Biogeosciences 121(7): 1747-1761.
dc.identifier.issn2169-8953
dc.identifier.issn2169-8961
dc.identifier.urihttps://hdl.handle.net/2027.42/134233
dc.description.abstractClouds scatter direct solar radiation, generating diffuse radiation and altering the ratio of direct to diffuse light. If diffuse light increases plant canopy CO2 uptake, clouds may indirectly influence climate by altering the terrestrial carbon cycle. However, past research primarily uses proxies or qualitative categories of clouds to connect the effect of diffuse light on CO2 uptake to sky conditions. We mechanistically link and quantify effects of cloud optical thickness (τc) to surface light and plant canopy CO2 uptake by comparing satellite retrievals of τc to ground‐based measurements of diffuse and total photosynthetically active radiation (PAR; 400–700 nm) and gross primary production (GPP) in forests and croplands. Overall, total PAR decreased with τc, while diffuse PAR increased until an average τc of 6.8 and decreased with larger τc. When diffuse PAR increased with τc, 7–24% of variation in diffuse PAR was explained by τc. Light‐use efficiency (LUE) in this range increased 0.001–0.002 per unit increase in τc. Although τc explained 10–20% of the variation in LUE, there was no significant relationship between τc and GPP (p > 0.05) when diffuse PAR increased. We conclude that diffuse PAR increases under a narrow range of optically thin clouds and the dominant effect of clouds is to reduce total plant‐available PAR. This decrease in total PAR offsets the increase in LUE under increasing diffuse PAR, providing evidence that changes within this range of low cloud optical thickness are unlikely to alter the magnitude of terrestrial CO2 fluxes.Key PointsDiffuse light increases over a narrow range of optically thin clouds (τc < 7)The decrease in total light under optically thin cloud offsets increases in light‐use efficiencyChanges within τc < 7 are unlikely to alter plant canopy CO2 uptake
dc.publisherSpringer
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMODIS
dc.subject.otherdiffuse light
dc.subject.otherecosystem productivity
dc.subject.othercloud optical thickness
dc.titleUsing satellite‐derived optical thickness to assess the influence of clouds on terrestrial carbon uptake
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134233/1/jgrg20608_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134233/2/jgrg20608.pdf
dc.identifier.doi10.1002/2016JG003365
dc.identifier.sourceJournal of Geophysical Research: Biogeosciences
dc.identifier.citedreferenceOliphant, A. J., D. Dragoni, B. Deng, C. S. B. Grimmond, H. P. Schmid, and S. L. Scott ( 2011 ), The role of sky conditions on gross primary production in a mixed deciduous forest, Agric. Forest Meteorol., 151 ( 7 ), 781 – 791, doi: 10.1016/j.agrformet.2011.01.005.
dc.identifier.citedreferenceMin, Q., and S. Wang ( 2008 ), Clouds modulate terrestrial carbon uptake in a midlatitude hardwood forest, Geophys. Res. Lett., 35, L02406, doi: 10.1029/2007GL032398.
dc.identifier.citedreferenceNiyogi, D., et al. ( 2004 ), Direct observations of the effects of aerosol loading on net ecosystem CO 2 exchanges over different landscapes, Geophys. Res. Lett., 31, L20506, doi: 10.1029/2004GL020915.
dc.identifier.citedreferenceOtkin, J. A., and T. J. Greenwald ( 2008 ), Comparison of WRF model‐simulated and MODIS‐derived cloud data, Mon. Weather Rev., 136 ( 6 ), 1957 – 1970, doi: 10.1175/2007MWR2293.1.
dc.identifier.citedreferencePincus, R., S. Platnick, S. A. Ackerman, R. S. Hemler, and R. J. Patrick Hofmann ( 2012 ), Reconciling simulated and observed views of clouds: MODIS, ISCCP, and the limits of instrument simulators, J. Clim., 25 ( 13 ), 4699 – 4720, doi: 10.1175/JCLI-D-11-00267.1.
dc.identifier.citedreferencePlatnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey ( 2003 ), The MODIS cloud products: Algorithms and examples from Terra, IEEE Trans. Geosci. Remote Sens., 41 ( 2 ), 459 – 473, doi: 10.1109/tgrs.2002.808301.
dc.identifier.citedreferenceQu, J. J. ( 2006 ), Earth Science Satellite Remote Sensing Vol. 2: Data, Computational Processing, and Tools, Springer, Berlin.
dc.identifier.citedreferenceR Core Team ( 2014 ), R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria.
dc.identifier.citedreferenceRocha, A. V., H.‐B. Su, C. S. Vogel, H. P. Schmid, and P. S. Curtis ( 2004 ), Photosynthetic and water use efficiency responses to diffuse radiation by an aspen‐dominated northern hardwood forest, For. Sci., 50 ( 6 ), 793 – 801.
dc.identifier.citedreferenceScott, N. A., C. A. Rodrigues, H. Hughes, J. T. Lee, E. A. Davidson, D. B. Dail, P. Malerba, and D. Y. Hollinger ( 2004 ), Changes in carbon storage and net carbon exchange one year after an initial s helterwood harvest at Howland Forest, ME, Environ. Manag., 33 ( 1 ), S9 – S22, doi: 10.1007/s00267-003-9114-5.
dc.identifier.citedreferenceShonk, J. K. P., R. J. Hogan, J. M. Edwards, and G. G. Mace ( 2010 ), Effect of improving representation of horizontal and vertical cloud structure on the Earth’s global radiation budget. Part I: Review and parametrization, Q. J. R. Meteorol. Soc., 136 ( 650 ), 1191 – 1204, doi: 10.1002/qj.647.
dc.identifier.citedreferenceSteiner, A. L., D. Mermelstein, S. J. Cheng, T. E. Twine, and A. Oliphant ( 2013 ), Observed impact of atmospheric aerosols on the surface energy budget, Earth Interact, 17, 1 – 22.
dc.identifier.citedreferenceStephens, G. L. ( 2005 ), Cloud feedbacks in the climate system: A critical review, J. Clim., 18 ( 2 ), 237 – 273, doi: 10.1175/JCLI-3243.1.
dc.identifier.citedreferenceStill, C. J., et al. ( 2009 ), Influence of clouds and diffuse radiation on ecosystem‐atmosphere CO 2 and CO 18 O exchanges, J. Geophys. Res., 114, G01018, doi: 10.1029/2007JG000675.
dc.identifier.citedreferenceSun, B., M. Free, H. L. Yoo, M. J. Foster, A. Heidinger, and K.‐G. Karlsson ( 2015 ), Variability and trends in U.S. cloud cover: ISCCP, PATMOS‐x, and CLARA‐A1 compared to homogeneity‐adjusted weather observations, J. Clim., 28 ( 11 ), 4373 – 4389, doi: 10.1175/JCLI-D-14-00805.1.
dc.identifier.citedreferenceSuyker, A. E., and S. B. Verma ( 2008 ), Interannual water vapor and energy exchange in an irrigated maize‐based agroecosystem, Agric. Forest Meteorol., 148 ( 3 ), 417 – 427, doi: 10.1016/j.agrformet.2007.10.005.
dc.identifier.citedreferenceTurner, D. P., S. Urbanski, D. Bremer, S. C. Wofsy, T. Meyers, S. T. Gower, and M. Gregory ( 2003 ), A cross‐biome comparison of daily light use efficiency for gross primary production, Global Change Biol., 9 ( 3 ), 383 – 395, doi: 10.1046/j.1365-2486.2003.00573.x.
dc.identifier.citedreferenceTwomey, S. ( 1991 ), Symposium on global climatic effects of aerosols, clouds and radiation, Atmos. Environ. Part A General Top., 25 ( 11 ), 2435 – 2442, doi: 10.1016/0960-1686(91)90159-5.
dc.identifier.citedreferenceUrban, O., et al. ( 2007 ), Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation, Global Change Biol., 13 ( 1 ), 157 – 168, doi: 10.1111/j.1365-2486.2006.01265.x.
dc.identifier.citedreferenceUrban, O., et al. ( 2012 ), Impact of clear and cloudy sky conditions on the vertical distribution of photosynthetic CO 2 uptake within a spruce canopy, Funct. Ecol., 26 ( 1 ), 46 – 55, doi: 10.1111/j.1365-2435.2011.01934.x.
dc.identifier.citedreferenceVárnai, T., and A. Marshak ( 2002 ), Observations of three‐dimensional radiative effects that influence MODIS cloud optical thickness retrievals, J. Atmos. Sci., 59 ( 9 ), 1607 – 1618, doi: 10.1175/1520-0469(2002)059<1607:OOTDRE>2.0.CO;2.
dc.identifier.citedreferenceXu, L., and D. D. Baldocchi ( 2004 ), Seasonal variation in carbon dioxide exchange over a Mediterranean annual grassland in California, Agric. Forest Meteorol., 123 ( 1–2 ), 79 – 96, doi: 10.1016/j.agrformet.2003.10.004.
dc.identifier.citedreferenceZeng, S., C. Cornet, F. Parol, J. Riedi, and F. Thieuleux ( 2012 ), A better understanding of cloud optical thickness derived from the passive sensors MODIS/AQUA and POLDER/PARASOL in the A‐Train constellation, Atmos. Chem. Phys., 12 ( 23 ), 11,245 – 11,259, doi: 10.5194/acp-12-11245-2012.
dc.identifier.citedreferenceAlton, P. B. ( 2008 ), Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies, Agric. Forest Meteorol., 148 ( 10 ), 1641 – 1653, doi: 10.1016/j.agrformet.2008.05.014.
dc.identifier.citedreferenceAlton, P. B., P. North, J. Kaduk, and S. Los ( 2005 ), Radiative transfer modeling of direct and diffuse sunlight in a Siberian pine forest, J. Geophys. Res., 110, D23209, doi: 10.1029/2005JD006060.
dc.identifier.citedreferenceAlton, P. B., P. R. North, and S. O. Los ( 2007 ), The impact of diffuse sunlight on canopy light‐use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes, Global Change Biol., 13 ( 4 ), 776 – 787, doi: 10.1111/j.1365-2486.2007.01316.x.
dc.identifier.citedreferenceAndrews, T., J. Gregory, P. Forster, and M. Webb ( 2012 ), Cloud adjustment and its role in CO 2 radiative forcing and climate sensitivity: A review, Surv. Geophys., 33 ( 3–4 ), 619 – 635, doi: 10.1007/s10712-011-9152-0.
dc.identifier.citedreferenceArking, A. ( 1991 ), The radiative effects of clouds and their impact on climate, Bull. Am. Meteorol. Soc., 72 ( 6 ), 795 – 813, doi: 10.1175/1520-0477(1991)072<0795:TREOCA>2.0.CO;2.
dc.identifier.citedreferenceBaldocchi, D. D. ( 2003 ), Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future, Global Change Biol., 9 ( 4 ), 479 – 492, doi: 10.1046/j.1365-2486.2003.00629.x.
dc.identifier.citedreferenceBarker, H. W., G. L. Stephens, and Q. Fu ( 1999 ), The sensitivity of domain‐averaged solar fluxes to assumptions about cloud geometry, Q. J. R. Meteorol. Soc., 125 ( 558 ), 2127 – 2152, doi: 10.1002/qj.49712555810.
dc.identifier.citedreferenceBaum, B., and S. Platnick ( 2006 ), Introduction to MODIS Cloud Products, in Earth Science Satellite Remote Sensing, edited by J. Qu et al., pp. 74 – 91, Springer, Berlin, doi: 10.1007/978-3-540-37293-6_5.
dc.identifier.citedreferenceBird, R. E., and C. Riordan ( 1986 ), Simple solar spectral model for direct and diffuse irradiance on horizontal and tilted planes at the Earth’s surface for cloudless atmospheres, J. Climate Appl. Meteorol., 25 ( 1 ), 87 – 97, doi: 10.1175/1520-0450(1986)025<0087:SSSMFD>2.0.CO;2.
dc.identifier.citedreferenceBony, S., et al. ( 2015 ), Clouds, circulation and climate sensitivity, Nat. Geosci., 8 ( 4 ), 261 – 268, doi: 10.1038/ngeo2398.
dc.identifier.citedreferenceBoucher, O., et al. ( 2013 ), Clouds and aerosols, in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by T. F. Stocker et al., Cambridge Univ. Press, Cambridge, U. K., and New York.
dc.identifier.citedreferenceButt, N., M. New, Y. Malhi, A. C. L. da Costa, P. Oliveira, and J. E. Silva‐Espejo ( 2010 ), Diffuse radiation and cloud fraction relationships in two contrasting Amazonian rainforest sites, Agric. Forest Meteorol., 150 ( 3 ), 361 – 368, doi: 10.1016/j.agrformet.2009.12.004.
dc.identifier.citedreferenceCess, R. D., et al. ( 1995 ), Absorption of solar radiation by clouds: Observations versus models, Science, 267 ( 5197 ), 496 – 499, doi: 10.1126/science.267.5197.496.
dc.identifier.citedreferenceCheng, S. J., G. Bohrer, A. L. Steiner, D. Y. Hollinger, A. Suyker, R. P. Phillips, and K. J. Nadelhoffer ( 2015 ), Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems, Agric. Forest Meteorol., 201, 98 – 110, doi: 10.1016/j.agrformet.2014.11.002.
dc.identifier.citedreferenceChou, M.‐D., M. J. Suarez, C.‐H. Ho, M. M.‐H. Yan, and K.‐T. Lee ( 1998 ), Parameterizations for cloud overlapping and shortwave single‐scattering properties for use in general circulation and cloud ensemble models, J. Clim., 11 ( 2 ), 202 – 214, doi: 10.1175/1520-0442(1998)011<0202:PFCOAS>2.0.CO;2.
dc.identifier.citedreferenceDavin, E. L., and S. I. Seneviratne ( 2012 ), Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate, Biogeosciences, 9 ( 5 ), 1695 – 1707, doi: 10.5194/bg-9-1695-2012.
dc.identifier.citedreferenceDavis, A. B., and A. Marshak ( 2010 ), Solar radiation transport in the cloudy atmosphere: A 3D perspective on observations and climate impacts, Rep. Prog. Phys., 73 ( 2 ), 026801.
dc.identifier.citedreferenceDengel, S., and J. Grace ( 2010 ), Carbon dioxide exchange and canopy conductance of two coniferous forests under various sky conditions, Oecologia, 164 ( 3 ), 797 – 808.
dc.identifier.citedreferenceDim, J. R., T. Takamura, I. Okada, T. Y. Nakajima, and H. Takenaka ( 2007 ), Influence of inhomogeneous cloud fields on optical properties retrieved from satellite observations, J. Geophys. Res., 112, D13202, doi: 10.1029/2006JD007891.
dc.identifier.citedreferenceDore, S., M. Montes‐Helu, S. C. Hart, B. A. Hungate, G. W. Koch, J. B. Moon, A. J. Finkral, and T. E. Kolb ( 2012 ), Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand‐replacing fire, Global Change Biol., 18 ( 10 ), 3171 – 3185, doi: 10.1111/j.1365-2486.2012.02775.x.
dc.identifier.citedreferenceDragoni, D., H. P. Schmid, C. A. Wayson, H. Potter, C. S. B. Grimmond, and J. C. Randolph ( 2011 ), Evidence of increased net ecosystem productivity associated with a longer vegetated season in a deciduous forest in south‐central Indiana, USA, Global Change Biol., 17 ( 2 ), 886 – 897, doi: 10.1111/j.1365-2486.2010.02281.x.
dc.identifier.citedreferenceEarl, H., C. J. Bernacchi, and H. Medrano ( 2012 ), Crop photosynthesis, in Terrestrial Photosynthesis in a Changing Environment, edited by J. Flexas, F. Loreto, and H. Medrano, 510 pp., Cambridge Univ. Press, Cambridge.
dc.identifier.citedreferenceFree, M., and B. Sun ( 2014 ), Trends in U.S. total cloud cover from a homogeneity‐adjusted dataset, J. Clim., 27 ( 13 ), 4959 – 4969, doi: 10.1175/JCLI-D-13-00722.1.
dc.identifier.citedreferenceFriedlingstein, P., M. Meinshausen, V. K. Arora, C. D. Jones, A. Anav, S. K. Liddicoat, and R. Knutti ( 2014 ), Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks, J. Clim., 27 ( 2 ), 511 – 526, doi: 10.1175/JCLI-D-12-00579.1.
dc.identifier.citedreferenceGarrity, S. R., G. Bohrer, K. D. Maurer, K. L. Mueller, C. S. Vogel, and P. S. Curtis ( 2011 ), A comparison of multiple phenology data sources for estimating seasonal transitions in deciduous forest carbon exchange, Agric. Forest Meteorol., 151 ( 12 ), 1741 – 1752, doi: 10.1016/j.agrformet.2011.07.008.
dc.identifier.citedreferenceGough, C. M., B. S. Hardiman, L. E. Nave, G. Bohrer, K. D. Maurer, C. S. Vogel, K. J. Nadelhoffer, and P. S. Curtis ( 2013 ), Sustained carbon uptake and storage following moderate disturbance in a Great Lakes forest, Ecol. Appl., 23 ( 5 ), 1202 – 1215, doi: 10.1890/12-1554.1.
dc.identifier.citedreferenceGu, L., J. D. Fuentes, H. H. Shugart, R. M. Staebler, and T. A. Black ( 1999 ), Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: Results from two North American deciduous forests, J. Geophys. Res., 104 ( D24 ), 31,421 – 31,434, doi: 10.1029/1999JD901068.
dc.identifier.citedreferenceGu, L., D. Baldocchi, S. B. Verma, T. A. Black, T. Vesala, E. M. Falge, and P. R. Dowty ( 2002 ), Advantages of diffuse radiation for terrestrial ecosystem productivity, J. Geophys. Res., 107 ( D6 ), 4050, doi: 10.1029/2001JD001242.
dc.identifier.citedreferenceHansen, J. E. ( 1971 ), Multiple scattering of polarized light in planetary atmospheres Part ii. Sunlight reflected by terrestrial water clouds, J. Atmos. Sci., 28 ( 8 ), 1400 – 1426, doi: 10.1175/1520-0469(1971)028<1400:MSOPLI>2.0.CO;2.
dc.identifier.citedreferenceHollinger, D. Y., F. M. Kelliher, J. N. Byers, J. E. Hunt, T. M. McSeveny, and P. L. Weir ( 1994 ), Carbon dioxide exchange between an undisturbed old‐growth temperate forest and the atmosphere, Ecology, 75 ( 1 ), 134 – 150, doi: 10.2307/1939390.
dc.identifier.citedreferenceHollinger, D. Y., et al. ( 2004 ), Spatial and temporal variability in forest‐atmosphere CO 2 exchange, Global Change Biol., 10 ( 10 ), 1689 – 1706, doi: 10.1111/j.1365-2486.2004.00847.x.
dc.identifier.citedreferenceJenkins, J. P., A. D. Richardson, B. H. Braswell, S. V. Ollinger, D. Y. Hollinger, and M. L. Smith ( 2007 ), Refining light‐use efficiency calculations for a deciduous forest canopy using simultaneous tower‐based carbon flux and radiometric measurements, Agric. Forest Meteorol., 143 ( 1–2 ), 64 – 79, doi: 10.1016/j.agrformet.2006.11.008.
dc.identifier.citedreferenceKanniah, K. D., J. Beringer, P. North, and L. Hutley ( 2012 ), Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review, Prog. Phys. Geogr., 36 ( 2 ), 209 – 237, doi: 10.1177/0309133311434244.
dc.identifier.citedreferenceKikuchi, N., T. Nakajima, H. Kumagai, H. Kuroiwa, A. Kamei, R. Nakamura, and T. Y. Nakajima ( 2006 ), Cloud optical thickness and effective particle radius derived from transmitted solar radiation measurements: Comparison with cloud radar observations, J. Geophys. Res., 111, D07205, doi: 10.1029/2005JD006363.
dc.identifier.citedreferenceKing, M. D. ( 1987 ), Determination of the scaled optical thickness of clouds from reflected solar radiation measurements, J. Atmos. Sci., 44 ( 13 ), 1734 – 1751, doi: 10.1175/1520-0469(1987)044<1734:DOTSOT>2.0.CO;2.
dc.identifier.citedreferenceKing, M. D., et al. ( 1997 ), Cloud retrieval algorithms for MODIS: Optical thickness, effective particle radius, and thermodynamic phase, NASA Goddard Space Flight Cent., Greenbelt, Md.
dc.identifier.citedreferenceKing, M. D., W. P. Menzel, Y. J. Kaufman, D. Tanre, B. C. Gao, S. Platnick, S. A. Ackerman, L. A. Remer, R. Pincus, and P. A. Hubanks ( 2003 ), Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE Trans. Geosci. Remote Sens., 41, 442 – 458.
dc.identifier.citedreferenceKing, M. D., S. Platnick, W. P. Menzel, S. A. Ackerman, and P. A. Hubanks ( 2013 ), Spatial and temporal distribution of clouds observed by MODIS onboard the Terra and Aqua satellites, IEEE Trans. Geosci. Remote Sens., 51 ( 7 ), 3826 – 3852, doi: 10.1109/tgrs.2012.2227333.
dc.identifier.citedreferenceKnohl, A., and D. D. Baldocchi ( 2008 ), Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem, J. Geophys. Res., 113, G02023, doi: 10.1029/2007JG000663.
dc.identifier.citedreferenceKoren, I., L. Oreopoulos, G. Feingold, L. A. Remer, and O. Altaratz ( 2008 ), How small is a small cloud?, Atmos. Chem. Phys., 8 ( 14 ), 3855 – 3864, doi: 10.5194/acp-8-3855-2008.
dc.identifier.citedreferenceLauer, A., and K. Hamilton ( 2013 ), Simulating clouds with global climate models: A comparison of CMIP5 results with CMIP3 and satellite data, J. Clim., 26 ( 11 ), 3823 – 3845, doi: 10.1175/JCLI-D-12-00451.1.
dc.identifier.citedreferenceLaw, B. E., et al. ( 2002 ), Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation, Agric. Forest Meteorol., 113 ( 1–4 ), 97 – 120, doi: 10.1016/S0168-1923(02)00104-1.
dc.identifier.citedreferenceLeontyeva, E., and K. Stamnes ( 1994 ), Estimations of cloud optical thickness from ground‐based measurements of incoming solar radiation in the Arctic, J. Clim., 7 ( 4 ), 566 – 578, doi: 10.1175/1520-0442(1994)007<0566:EOCOTF>2.0.CO;2.
dc.identifier.citedreferenceLiu, B. Y. H., and R. C. Jordan ( 1960 ), The interrelationship and characteristic distribution of direct, diffuse and total solar radiation, Solar Energy, 4 ( 3 ), 1 – 19, doi: 10.1016/0038-092X(60)90062-1.
dc.identifier.citedreferenceMa, S., D. D. Baldocchi, J. A. Hatala, M. Detto, and J. Curiel Yuste ( 2012 ), Are rain‐induced ecosystem respiration pulses enhanced by legacies of antecedent photodegradation in semi‐arid environments?, Agric. Forest Meteorol., 154–155, 203 – 213, doi: 10.1016/j.agrformet.2011.11.007.
dc.identifier.citedreferenceMacke, A., P. N. Francis, G. M. McFarquhar, and S. Kinne ( 1998 ), The role of ice particle shapes and size distributions in the single scattering properties of cirrus clouds, J. Atmos. Sci., 55 ( 17 ), 2874 – 2883, doi: 10.1175/1520-0469(1998)055<2874:TROIPS>2.0.CO;2.
dc.identifier.citedreferenceMarchand, R. ( 2013 ), Trends in ISCCP, MISR, and MODIS cloud‐top‐height and optical‐depth histograms, J. Geophys. Res. Atmos., 118, 1941 – 1949, doi: 10.1002/jgrd.50207.
dc.identifier.citedreferenceMayer, B., A. Kylling, S. Madronich, and G. Seckmeyer ( 1998 ), Enhanced absorption of UV radiation due to multiple scattering in clouds: Experimental evidence and theoretical explanation, J. Geophys. Res., 103 ( D23 ), 31,241 – 31,254, doi: 10.1029/98JD02676.
dc.identifier.citedreferenceMedlyn, B. E. ( 1998 ), Physiological basis of the light use efficiency model, Tree Physiol., 18 ( 3 ), 167 – 176.
dc.identifier.citedreferenceMercado, L. M., N. Bellouin, S. Sitch, O. Boucher, C. Huntingford, M. Wild, and P. M. Cox ( 2009 ), Impact of changes in diffuse radiation on the global land carbon sink, Nature, 458 ( 7241 ), 1014 – 1017, doi: 10.1038/nature07949.
dc.identifier.citedreferenceMichalsky, J. J., R. Perez, R. Stewart, B. A. LeBaron, and L. Harrison ( 1988 ), Design and development of a rotating shadowband radiometer solar radiation/daylight network, Solar Energy, 41 ( 6 ), 577 – 581, doi: 10.1016/0038-092X(88)90060-6.
dc.identifier.citedreferenceMiller, G. R., D. D. Baldocchi, B. E. Law, and T. Meyers ( 2007 ), An analysis of soil moisture dynamics using multi‐year data from a network of micrometeorological observation sites, Adv. Water Resour., 30 ( 5 ), 1065 – 1081, doi: 10.1016/j.advwatres.2006.10.002.
dc.identifier.citedreferenceMin, Q. ( 2005 ), Impacts of aerosols and clouds on forest‐atmosphere carbon exchange, J. Geophys. Res., 110, D06203, doi: 10.1029/2004JD004858.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.