Show simple item record

Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory

dc.contributor.authorTomczyk, S.
dc.contributor.authorLandi, E.
dc.contributor.authorBurkepile, J. T.
dc.contributor.authorCasini, R.
dc.contributor.authorDeLuca, E. E.
dc.contributor.authorFan, Y.
dc.contributor.authorGibson, S. E.
dc.contributor.authorLin, H.
dc.contributor.authorMcIntosh, S. W.
dc.contributor.authorSolomon, S. C.
dc.contributor.authorToma, G.
dc.contributor.authorWijn, A. G.
dc.contributor.authorZhang, J.
dc.date.accessioned2016-10-17T21:19:52Z
dc.date.available2017-10-05T14:33:49Zen
dc.date.issued2016-08
dc.identifier.citationTomczyk, S.; Landi, E.; Burkepile, J. T.; Casini, R.; DeLuca, E. E.; Fan, Y.; Gibson, S. E.; Lin, H.; McIntosh, S. W.; Solomon, S. C.; Toma, G.; Wijn, A. G.; Zhang, J. (2016). "Scientific objectives and capabilities of the Coronal Solar Magnetism Observatory." Journal of Geophysical Research: Space Physics 121(8): 7470-7487.
dc.identifier.issn2169-9380
dc.identifier.issn2169-9402
dc.identifier.urihttps://hdl.handle.net/2027.42/134244
dc.description.abstractMagnetic influences increase in importance in the solar atmosphere from the photosphere out into the corona, yet our ability to routinely measure magnetic fields in the outer solar atmosphere is lacking. We describe the scientific objectives and capabilities of the COronal Solar Magnetism Observatory (COSMO), a proposed synoptic facility designed to measure magnetic fields and plasma properties in the large‐scale solar atmosphere. COSMO comprises a suite of three instruments chosen to enable the study of the solar atmosphere as a coupled system: (1) a coronagraph with a 1.5 m aperture to measure the magnetic field, temperature, density, and dynamics of the corona; (2) an instrument for diagnostics of chromospheric and prominence magnetic fields and plasma properties; and (3) a white light K‐coronagraph to measure the density structure and dynamics of the corona and coronal mass ejections. COSMO will provide a unique combination of magnetic field, density, temperature, and velocity observations in the corona and chromosphere that have the potential to transform our understanding of fundamental physical processes in the solar atmosphere and their role in the origins of solar variability and space weather.Key PointsSociety is becoming increasingly vulnerable to the effects of space weatherThe physical processes responsible for solar activity remain poorly understoodCOSMO will provide key measurements to advance our understanding of solar processes and activity
dc.publisherWiley Periodicals, Inc.
dc.publisherSpringer
dc.subject.othersolar corona
dc.titleScientific objectives and capabilities of the Coronal Solar Magnetism Observatory
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAstronomy and Astrophysics
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134244/1/jgra52783_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134244/2/jgra52783.pdf
dc.identifier.doi10.1002/2016JA022871
dc.identifier.sourceJournal of Geophysical Research: Space Physics
dc.identifier.citedreferenceRoberts, B. ( 2000 ), Waves and oscillations in the corona, Sol. Phys., 193, 139 – 152, doi: 10.1023/A:1005237109398.
dc.identifier.citedreferenceSchmieder, B., L. van Driel‐Gesztelyi, G. Aulanier, P. Démoulin, B. Thompson, C. de Forest, J. E. Wiik, C. Saint Cyr, and J. C. Vial ( 2002 ), Relationships between CMEs and prominences, Adv. Space Res., 29, 1451, doi: 10.1016/S0273-1177(02)00211-9.
dc.identifier.citedreferenceZhang, J., X. Cheng, and M.‐D. Ding ( 2012 ), Observation of an evolving magnetic flux rope before and during a solar eruption, Nat. Commun., 3, 747, doi: 10.1038/ncomms1753.
dc.identifier.citedreferenceSchmieder, B., H. Tian, T. Kucera, A. Lopez Ariste, N. Mein, P. Mein, K. Dalmasse, and L. Golub ( 2014 ), Open questions on prominences from coordinated observations by IRIS, Hinode, SDO/AIA, THEMIS, and the Meudon/MSDP, Astron. Astrophys., 569, A85, doi: 10.1051/0004-6361/201423922.
dc.identifier.citedreferenceSchrijver, C. J. ( 2015 ), Socio‐economic hazards and impacts of space weather: The important range between mild and extreme, Space Weather, 13, 524 – 528, doi: 10.1002/2015SW001252.
dc.identifier.citedreferenceSchrijver, C. J., et al. ( 2008 ), Nonlinear force‐free field modeling of a solar active region around the time of a major flare and coronal mass ejection, Astrophys. J., 675 ( 2 ), 1637 – 1644, doi: 10.1086/527413.
dc.identifier.citedreferenceSchwadron, N. A., et al. ( 2015 ), Particle acceleration at low coronal compression regions and shocks, Astrophys. J., 810, 97, doi: 10.1088/0004-637X/810/2/97.
dc.identifier.citedreferenceSt. Cyr, O. C., J. T. Burkepile, A. J. Hundhausen, and A. R. Lecinski ( 1999 ), A comparison of ground‐based and spacecraft observations of coronal mass ejections from 1980–1989, J. Geophys. Res., 104, 12,493 – 12,506, doi: 10.1029/1999JA900045.
dc.identifier.citedreferenceThompson, W. T., et al. ( 2003 ), The COR1 inner coronagraph for STEREO‐SECCHI, Proc. SPIE, 4853, 1 – 11.
dc.identifier.citedreferenceTian, H., S. Tomczyk, S. W. McIntosh, C. Bethge, G. de Toma, and S. E. Gibson ( 2013 ), Observations of coronal mass ejections with the coronal multichannel polarimeter, Sol. Phys., 288 ( 2 ), 637 – 650, doi: 10.1007/s11207-013-0317-5.
dc.identifier.citedreferenceTomczyk, S. ( 2015 ), Measurement errors for coronal magnetic field parameters, COSMO Tech. Note 1.
dc.identifier.citedreferenceTomczyk, S., and S. W. McIntosh ( 2009 ), Time‐distance seismology of the solar corona with CoMP, Astrophys. J., 697, 1384 – 1391, doi: 10.1088/0004-637X/697/2/1384.
dc.identifier.citedreferenceTomczyk, S., S. W. McIntosh, S. L. Keil, P. G. Judge, T. Schad, D. H. Seeley, and J. Edmonson ( 2007 ), Alfvén waves in the solar corona, Science, 317, 1192, doi: 10.1126/science.1143304.
dc.identifier.citedreferenceTomczyk, S., G. L. Card, T. Darnell, D. F. Elmore, R. Lull, P. G. Nelson, K. V. Streander, J. Burkepile, R. Casini, and P. Judge ( 2008 ), An instrument to measure coronal emission line polarization, Sol. Phys., 247, 411, doi: 10.1007/s11207-007-9103-6.
dc.identifier.citedreferenceTomczyk, S., R. Casini, A. G. De Wijn, and P. G. Nelson ( 2010 ), Wavelength‐diverse polarization modulators for Stokes polarimetry, Appl. Opt., 49, 3580, doi: 10.1364/AO.49.003580.
dc.identifier.citedreferenceTomczyk, S., P. Oakley, and P. G. Nelson ( 2015 ), COSMO large coronagraph site evaluation and selection, COSMO Tech. Note.
dc.identifier.citedreferenceTomczyk, S., S. K. Mathew, and D. Gallagher ( 2016 ), Development of a tunable filter for coronal polarimetry, J. Geophys. Res. Space Physics, 121, doi: 10.1002/2016JA022682.
dc.identifier.citedreferenceTörök, T., B. Kliem, and V. S. Titov ( 2004 ), Ideal kink instability of a magnetic loop equilibrium, Astron. Astrophys., 413, L27 – L30, doi: 10.1051/0004-6361:20031691.
dc.identifier.citedreferenceToth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870, doi: 10.1016/j.jcp.2011.02.006.
dc.identifier.citedreferencevan der Holst, B., S. I. Sokolov, X. Meng, M. Jin, W. B. Manchester IV, G. Tóth, and T. I. Gombosi ( 2014 ), Alfvén Wave Solar Model (AWSoM): Coronal Heating, ApJ, 782, 81, doi: 10.1088/0004-637X/782/2/81.
dc.identifier.citedreferenceVourlidas, A., S. T. Wu, A. H. Wang, P. Subramanian, and R. A. Howard ( 2003 ), Direct detection of a coronal mass ejection‐associated shock in Large Angle and Spectrometric Coronagraph Experiment white‐light images, Astrophys. J., 598, 1392, doi: 10.1086/379098.
dc.identifier.citedreferenceWebb, D. F., and T. A. Howard ( 2012 ), Coronal mass ejections: Observations, Living Rev. Sol. Phys., 9 ( 3 ), 3, doi: 10.12942/lrsp-2012-3.
dc.identifier.citedreferenceWedemeyer, S., et al. ( 2015 ), SSALMON—The Solar Simulations for the Atacama Large Millimeter Observatory Network, Adv. Space Res., 56 ( 12 ), 2679 – 2692, doi: 10.1016/j.asr.2015.05.027.
dc.identifier.citedreferenceWhite, S. ( 2005 ), Radio measurements of coronal magnetic fields, in Proceedings of the International Scientific Conference on Chromospheric and Coronal Magnetic Fields (ESA SP‐596), edited by D. E. Innes, A. Lagg, and S. K. Solanki, pp. 89 – 113, ESA, Noordwijk, Netherlands.
dc.identifier.citedreferenceWhite, S. M., and M. R. Kundu ( 1997 ), Radio observations of gyroresonance emission from coronal magnetic fields, Sol. Phys., 174, 31 – 52, doi: 10.1023/A:1004975528106.
dc.identifier.citedreferenceWiegelmann, T., and T. Sakurai ( 2012 ), Solar force‐free magnetic fields, Living Rev. Sol. Phys., 9 ( 5 ), 5, doi: 10.12942/lrsp-2012-5.
dc.identifier.citedreferenceXu, Z., A. Lagg, S. Solanki, and Y. Liu ( 2012 ), Magnetic fields of an active region filament from full Stokes analysis of Si I 1082.7 nm and He I 1083.0 nm, Astrophys. J., 749, 138, doi: 10.1088/0004-637X/749/2/138.
dc.identifier.citedreferenceYan, Y., J. Zhang, W. Wang, F. Liu, Z. Chen, and G. Ji ( 2009 ), The Chinese spectral radioheliograph—CSRH, Earth Moon Planets, 104 ( 1–4 ), 97 – 100, doi: 10.1007/s11038-008-9254-y.
dc.identifier.citedreferenceZhang, J., N. Gopalswamy, M. R. Kundu, E. J. Schmahl, and J. R. Lemen ( 1998 ), Spatial structure of solar coronal magnetic loops revealed by transient microwave brightenings, Sol. Phys., 182, 285 – 298, doi: 10.1023/A:1005020207482.
dc.identifier.citedreferenceAlissandrakis, C. A., and F. Chiuderi‐Drago ( 1995 ), Coronal magnetic fields from Faraday rotation observations, Sol. Phys., 160, 171 – 179, doi: 10.1007/BF00679103.
dc.identifier.citedreferenceAntiochos, S. K., C. R. DeVore, and J. A. Klimchuk ( 1999 ), A model for solar coronal mass ejections, Astrophys. J., 510, 485 – 493, doi: 10.1086/306563.
dc.identifier.citedreferenceAschwanden, M. J., B. de Pontieu, C. J. Schrijver, and A. M. Title ( 2002 ), Transverse oscillations in coronal loops observed with TRACE II. Measurements of geometric and physical parameters, Sol. Phys., 206 ( 1 ), 99 – 132, doi: 10.1023/A:1014916701283.
dc.identifier.citedreferenceAschwanden, M. J., A. Winebarger, D. Tsiklauri, and H. Peter ( 2007 ), The coronal heating paradox, Astrophys. J., 659, 1673, doi: 10.1086/513070.
dc.identifier.citedreferenceBaker, D. N., A. Charo, and T. Zurbuchen ( 2013 ), Science for a technological society: The 2013–2022 decadal survey in solar and space physics, Space Weather, 11, 50 – 51, doi: 10.1002/swe.20022.
dc.identifier.citedreferenceBak‐Steslicka, U., S. E. Gibson, Y. Fan, C. Bethge, B. Forland, and L. A. Rachmeler ( 2013 ), The magnetic structure of solar prominence cavities: New observational signature revealed by coronal magnetometry, Astrophys. J. Lett., 770 ( 2 ), L28.
dc.identifier.citedreferenceBastian, T. S. ( 2003 ), The frequency agile solar radiotelescope, Adv. Space Res., 32 ( 12 ), 2705 – 2714, doi: 10.1016/S0273-1177(03)00903-7.
dc.identifier.citedreferenceBogod, V. M., and G. B. Gelfreikh ( 1980 ), Measurements of the magnetic field and the gradient of temperature in the solar atmosphere above a flocculus using radio observations, Sol. Phys., 67, 29 – 40, doi: 10.1007/BF00146680.
dc.identifier.citedreferenceBommier, V., E. Landi Degl’Innocenti, J. L. Leroy, and S. Sahal‐Brechot ( 1994 ), Complete determination of the magnetic field vector and of the electron density in 14 prominences from linear polarization measurements in the HeI D 3 and Hα lines, Sol. Phys., 154, 231, doi: 10.1007/BF00681098.
dc.identifier.citedreferenceBrosius, J. W., and S. M. White ( 2006 ), Radio measurements of the height of strong coronal magnetic fields above sunspots at the solar limb, Astrophys. J., 641, L69 – L72, doi: 10.1086/503774.
dc.identifier.citedreferenceBrueckner, G. E., et al. ( 1995 ), The Large Angle Spectroscopic Coronagraph (LASCO), Sol. Phys., 162, 357, doi: 10.1007/BF00733434.
dc.identifier.citedreferenceCanfield, R. C., H. S. Hudson, and D. E. McKenzie ( 1999 ), Sigmoidal morphology and eruptive solar activity, Geophys. Res. Lett., 26, 627 – 630, doi: 10.1029/1999GL900105.
dc.identifier.citedreferenceCasini, R. ( 2007 ), Prominence and filament magnetometry simulations, COSMO Tech. Note 12, High Alt. Obs., Boulder, Colo.
dc.identifier.citedreferenceCasini, R., A. López Ariste, S. Tomczyk, and B. W. Lites ( 2003 ), Magnetic maps of prominences from full stokes analysis of the He I D 3 line, Astrophys. J., 598, L67, doi: 10.1086/380496.
dc.identifier.citedreferenceCavallini, F. ( 2006 ), IBIS: A new post‐focus instrument for solar imaging spectroscopy, Sol. Phys., 236, 415, doi: 10.1007/s11207-006-0103-8.
dc.identifier.citedreferenceCulhane, J. L., et al. ( 2007 ), The EUV imaging spectrometer for Hinode, Sol. Phys., 243, 19 – 61, doi: 10.1007/s01007-007-0293-1.
dc.identifier.citedreferenceDe Pontieu, B., et al. ( 2007 ), Chromospheric alfvénic waves strong enough to power the solar wind, Science, 318, 1574, doi: 10.1126/science.1151747.
dc.identifier.citedreferenceDe Pontieu, B., A. M. Title, and J. R. Lemen ( 2014 ), The Interface Region Imaging Spectrograph (IRIS), Sol. Phys., 289, 2733 – 2779, doi: 10.1007/s11207-014-0485-y.
dc.identifier.citedreferenceDeRosa, M. L., et al. ( 2009 ), A critical assessment of nonlinear force‐free field modeling of the solar corona for active region 10953, Astrophys. J., 696, 1780, doi: 10.1088/0004-637X/696/2/1780.
dc.identifier.citedreferencede Wijn, A. G., J. T. Burkepile, S. Tomczyk, P. Nelson, P. Huang, and D. Gallagher ( 2012 ), Stray light and polarimetry considerations for the COSMO K‐coronagraph, Proc. SPIE, 8444, doi: 10.1117/12.926511.
dc.identifier.citedreferencede Wijn, A. G., C. Bethge, S. Tomczyk, and S. W. McIntosh ( 2014 ), The chromosphere and prominence magnetometer, Proc. SPIE, 8446, 844678, doi: 10.1117/12.926395.
dc.identifier.citedreferenceDulk, G. A., and D. J. McLean ( 1978 ), Coronal magnetic fields, Sol. Phys., 57, 279 – 295, doi: 10.1007/BF00160102.
dc.identifier.citedreferenceElmore, D. F., J. T. Burkepile, J. A. Darnell, A. R. Lecinski, and A. L. Stanger ( 2003 ), Calibration of a ground‐based solar coronal polarimeter, Proc. SPIE, 4843, 66 – 75, doi: 10.1117/12.459279.
dc.identifier.citedreferenceEvans, J. W. ( 1949 ), The birefringent filter, J. Opt. Soc. Am., 39, 229, doi: 10.1364/JOSA.39.000229.
dc.identifier.citedreferenceFan, Y. ( 2011 ), An MHD model of the December 13 2006 eruptive flare, Astrophys. J., 740, 68, doi: 10.1088/0004-637X/740/2/68.
dc.identifier.citedreferenceFisher, R. R., R. H. Lee, R. M. MacQueen, and A. I. Poland ( 1981 ), New Mauna Loa coronagraph systems, Appl. Opt., 20, 1094 – 1101, doi: 10.1364/AO.20.001094.
dc.identifier.citedreferenceForland, B. C., S. E. Gibson, J. B. Dove, L. A. Rachmeler, and Y. Fan ( 2013 ), Coronal cavity survey: Morphological clues to eruptive magnetic topologies, Sol. Phys., 288 ( 2 ), 603 – 615, doi: 10.1007/s11207-013-0361-1.
dc.identifier.citedreferenceFrazin, R. A., A. M. Vásquez, F. Kamalabadi, and H. Park ( 2007 ), Three‐dimensional tomographic analysis of a high‐cadence LASCO‐C2 polarized brightness sequence, Astrophys. J., 671 ( 2 ), L201 – L204, doi: 10.1086/525017.
dc.identifier.citedreferenceGary, D. E., and G. J. Hurford ( 1994 ), Coronal temperature, density and magnetic field maps of a solar active region using the Owens Valley solar array, Astrophys. J., 420, 903 – 912, doi: 10.1086/173614.
dc.identifier.citedreferenceGibson, S. ( 2015a ), Coronal cavities: Observations and implications for the magnetic environment of prominences, in Solar Prominences, Astrophys. and Space Sci. Libr., vol. 415, 323 pp., Springer, Cham, Switzerland.
dc.identifier.citedreferenceGibson, S. ( 2015b ), Data‐model comparison using FORWARD and CoMP, Proc. Int. Astron. Union, 305, 245 – 250.
dc.identifier.citedreferenceGibson, S. E., et al. ( 2002 ), The structure and evolution of a sigmoidal active region, Astrophys. J., 574, 1021, doi: 10.1086/341090.
dc.identifier.citedreferenceGopalswamy, N. ( 2015 ), The dynamics of eruptive prominences, in Solar Prominences, ASSL, vol. 415, edited by J. C. Vial and O. Engvold, pp. 381, Springer, Switzerland.
dc.identifier.citedreferenceGray, L. J., et al. ( 2010 ), Solar influence on climate, Rev. Geophys., 48, RG4001, doi: 10.1029/2009RG000282.
dc.identifier.citedreferenceGrebinskij, A., V. Bogod, G. Gelfreikh, S. Urpo, S. Pohjolainen, and K. Shibasaki ( 2000 ), Microwave tomography of solar magnetic fields, Astron. Astrophys. Suppl. Ser., 144, 169 – 180, doi: 10.1051/aas:2000202.
dc.identifier.citedreferenceHabbal, S. R., M. Druckmüller, H. Morgan, A. Ding, J. Johnson, H. Druckmüllerová, A. Daw, M. B. Arndt, M. Dietzel, and J. Saken ( 2011 ), Thermodynamics of the solar corona and evolution of the solar magnetic field as inferred from the total solar eclipse observations of 2010 July 11, Astrophys. J., 734, 120 – 127, doi: 10.1088/0004-637X/734/2/120.
dc.identifier.citedreferenceHale, G. E. ( 1908 ), On the probable existence of a magnetic field in sun‐spots, Astrophys. J., 28, 315, doi: 10.1086/141602.
dc.identifier.citedreferenceHandy, B. N., et al. ( 1999 ), The transition region and coronal explorer, Sol. Phys., 187, 229 – 260, doi: 10.1023/A:1005166902804.
dc.identifier.citedreferenceHarvey, J. W., F. Hill, R. P. Hubbard, J. R. Kennedy, and J. W. Leibacher ( 1996 ), The Global Oscillation Network Group (GONG) project, Science, 272 ( 5266 ), 1284 – 1286, doi: 10.1126/science.272.5266.1284.
dc.identifier.citedreferenceHollweg, J. V. ( 1986 ), Transition region, corona, and solar wind in coronal holes, J. Geophys. Res., 91, 4111 – 4125, doi: 10.1029/JA091iA04p04111.
dc.identifier.citedreferenceHood, A. W., and E. R. Priest ( 1981 ), Critical conditions for magnetic instabilities in force‐free coronal loops, Geophys. Astrophys. Fluid Dyn., 17, 297, doi: 10.1080/03091928108243687.
dc.identifier.citedreferenceHoward, R. A., N. R. Sheeley, D. J. Michels, and M. J. Koomen ( 1985 ), Coronal mass ejections: 1979–1981, J. Geophys. Res., 90, 8173 – 8191, doi: 10.1029/JA090iA09p08173.
dc.identifier.citedreferenceHundhausen, A. J. ( 1993 ), Sizes and locations of coronal mass ejections – SMM observations from 1980 and 1984‐1989, J. Geophys. Res., 98, 13,177 – 13,200, doi: 10.1029/93JA00157.
dc.identifier.citedreferenceIsenberg, P. A. ( 1987 ), Energy diffusion of pickup ions upstream of comets, J. Geophys. Res., 92, 8795 – 8799, doi: 10.1029/JA092iA08p08795.
dc.identifier.citedreferenceIucci, N., et al. ( 2006 ), Spacecraft operational anomalies and space weather impact hazards, Adv. Space Res., 37, 184, doi: 10.1016/j.asr.2005.03.028.
dc.identifier.citedreferenceJacquinot, P. ( 1954 ), The luminosity of spectrometers with prisms, gratings, or Fabry Perot etalons, JOSA, 44, 761.
dc.identifier.citedreferenceJensen, E. A., M. M. Bisi, A. R. Breen, C. Heiles, T. Minter, and F. Vilas ( 2013 ), Measurements of Faraday rotation through the solar corona during the 2009 solar minimum with the Messenger spacecraft, Sol. Phys., 285, 83 – 95, doi: 10.1007/s11207-012-0213-4.
dc.identifier.citedreferenceJibben, P. R., K. K. Reeves, and Y. Su ( 2016 ), Evidence for a magnetic flux rope in observations of a solar prominence‐cavity system, Front. Astron. Space Sci., 3, 10, doi: 10.3389/fspas.2016.00010.
dc.identifier.citedreferenceJudge, P. G., and R. Casini ( 2001 ), A synthesis code for forbidden coronal lines, advanced solar polarimetry—Theory, observation, and instrumentation, in 20TH NSO/Sac Summer Workshop, ASP Conference Proceedings, vol. 236, edited by M. Sigwarth, 503 pp., Astron. Soc. of the Pac., San Francisco, Calif.
dc.identifier.citedreferenceJudge, P. G., R. Casini, S. Tomczyk, D. P. Edwards, and E. Francis ( 2001 ), Coronal magnetometry: A feasibility study, NCAR Tech. Rep. NCAR/TN‐446‐STR.
dc.identifier.citedreferenceKahler, S. W. ( 1992 ), Solar flares and coronal mass ejections, Annu. Rev. Astron. Astrophys., 30, 113 – 141, doi: 10.1146/annurev.aa.30.090192.000553.
dc.identifier.citedreferenceKeil, S. L., et al. ( 2003 ), Design and development of the Advanced Technology Solar Telescope (ATST), Proc. SPIE, 4853, 240 – 251.
dc.identifier.citedreferenceKeller, C. U., J. W. Harvey, and M. S. Giampapa ( 2003 ), SOLIS: An innovative suite of synoptic instruments, Proc. SPIE, 4853, 194 – 204.
dc.identifier.citedreferenceKliem, B., and T. Török ( 2006 ), Torus instability, Phys. Rev. Lett., 96 ( 25 ), 255002, doi: 10.1103/PhysRevLett.96.255002.
dc.identifier.citedreferenceKlimchuk, J. A. ( 2006 ), On solving the coronal heating problem, Sol. Phys., 234, 41, doi: 10.1007/s11207-006-0055-z.
dc.identifier.citedreferenceKobayashi, K., et al. ( 2014 ), The High‐Resolution Coronal Imager (Hi‐C), Sol. Phys., 289, 4393 – 4412, doi: 10.1007/s11207-014-0544-4.
dc.identifier.citedreferenceKramar, M., B. Inhester, and S. K. Solanki ( 2006 ), Vector tomography for the coronal magnetic field. I. Longitudinal Zeeman effect measurements, Astron. Astrophys., 456 ( 2 ), 665 – 673, doi: 10.1051/0004-6361:20064865.
dc.identifier.citedreferenceKramar, M., B. Inhester, H. Lin, and J. Davila ( 2013 ), Vector tomography for the coronal magnetic field. II. Hanle effect measurements, Astrophys. J., 775 ( 1 ), 25, doi: 10.1088/0004-637X/775/1/25.
dc.identifier.citedreferenceKramar, M., V. Airepetian, Z. Mikic, and J. Davila ( 2014 ), 3D Coronal Density Reconstruction and Retrieving the Magnetic Field Structure during Solar Minimum, Sol. Phys., 289 ( 8 ), 2927 – 2944, doi: 10.1007/s11207-014-0525-7.
dc.identifier.citedreferenceKramar, M., H. Lin, and S. Tomczyk ( 2016 ), Direct observation of solar coronal magnetic fields by vector tomography of the coronal emission line polarizations, Astrophys. J. Lett., 819 ( 2 ), L36 – L41, doi: 10.3847/2041-8205/819/2/L36.
dc.identifier.citedreferenceLambour, R. L., A. J. Coster, R. Clouser, L. E. Thornton, J. Sharma, and T. A. Cott ( 2003 ), Operational impacts of space weather, Geophys. Res. Lett., 30 ( 3 ), 1136, doi: 10.1029/2002GL015168.
dc.identifier.citedreferenceLandi, E., J. C. Raymond, M. P. Miralles, and H. Hara ( 2010 ), Physical conditions in a coronal mass ejection from Hinode, STEREO, and SOHO observations, Astrophys. J., 711, 75, doi: 10.1088/0004-637X/711/1/75.
dc.identifier.citedreferenceLandi, E., S. R. Habbal, and S. Tomczyk ( 2016 ), Coronal plasma diagnostics from ground‐based observations, J. Geophys. Res. Space Physics, 122, doi: 10.1002/2016JA022598, in press.
dc.identifier.citedreferenceLemen, J. R., et al. ( 2012 ), The Atmospheric Imaging Assembly (AIA) on the Solar Dynamics Observatory (SDO), Sol. Phys., 275, 17 – 40, doi: 10.1007/s11207-011-9776-8.
dc.identifier.citedreferenceLeroy, J. L., V. Bommier, and S. Sahal‐Bréchot ( 1984 ), New data on the magnetic structure of quiescent prominences, Astron. Astrophys., 131, 33.
dc.identifier.citedreferenceLin, H., J. R. Kuhn, and R. Coulter ( 2004 ), Coronal magnetic field measurements, Astrophys. J., 613, L177, doi: 10.1086/425217.
dc.identifier.citedreferenceLow, B. C. ( 1994 ), Magnetohydrodynamic processes in the solar corona: Flares, coronal mass ejections and magnetic helicity, Phys. Plasmas, 1, 1684, doi: 10.1063/1.870671.
dc.identifier.citedreferenceLow, B. C. ( 2001 ), Coronal mass ejections, magnetic flux ropes and solar magnetism, J. Geophys. Res., 106, 25,141 – 25,164, doi: 10.1029/2000JA004015.
dc.identifier.citedreferenceLyot, B. ( 1933 ), Optical apparatus with wide field using interference of polarized light, C. R. Acad. Sci. Ser. A, 197, 1593.
dc.identifier.citedreferenceMacQueen, R. M., J. T. Burkepile, T. E. Holzer, A. L. Stanger, and K. E. Spence ( 2001 ), Solar coronal brightness changes and mass ejections during solar cycle 22, Astrophys. J., 549, 1175, doi: 10.1086/319464.
dc.identifier.citedreferenceMalanushenko, A., C. J. Schrijver, M. L. DeRosa, M. S. Wheatland, and S. A. Gilchrist ( 2012 ), Guiding nonlinear force‐free modeling using coronal observations: First results using a quasi‐grad‐rubin scheme, Astrophys. J., 756 ( 2 ), 153, doi: 10.1088/0004-637X/756/2/153.
dc.identifier.citedreferenceMcIntosh, S. W., B. De Pontieu, M. Carlsson, V. Hansteen, P. Boerner, and M. Goossens ( 2011 ), Alfvénic waves with sufficient energy to power the quiet solar corona and fast solar wind, Nature, 475, 477, doi: 10.1038/nature10235.
dc.identifier.citedreferenceMeng, X., B. van der Holst, G. Toth, and T. I. Gombosi ( 2015 ), Alfvén wave solar model (AWSoM): Proton temperature anisotropy and solar wind acceleration, Mon. Not. R. Astron. Soc., 454, 3697, doi: 10.1093/mnras/stv2249.
dc.identifier.citedreferenceMerenda, L., J. Trujillo Bueno, E. Landi Degl’Innocenti, and M. Collados ( 2006 ), Determination of the magnetic field vector via the Hanle and Zeeman effects in the He I λ10830 multiplet: Evidence for nearly vertical magnetic fields in a polar crown prominence, Astrophys. J., 642, 554, doi: 10.1086/501038.
dc.identifier.citedreferenceMorton, R. J., and J. A. McLaughlin ( 2013 ), Hi‐C and AIA observations of transverse magnetohydrodynamic waves in active regions, Astron. Astrophys., 553, L10, doi: 10.1051/0004-6361/201321465.
dc.identifier.citedreferenceMorton, R. J., S. Tomczyk, and R. Pinto ( 2015 ), Investigating Alfvénic wave propagation in coronal open‐field regions, Nat. Commun., 6, 7813, doi: 10.1038/ncomms8813.
dc.identifier.citedreferenceNakariakov, V. M., and L. Ofman ( 2001 ), Determination of the coronal magnetic field by coronal loop oscillations, Astron. Astrophys., 372, L53 – L56, doi: 10.1051/0004-6361:20010607.
dc.identifier.citedreferenceNelson, P. G., S. Tomczyk, D. F. Elmore, and D. J. Kolinski ( 2008 ), The feasibility of large refracting telescopes for solar coronal research, Proc. SPIE, 7012, 701231–701231‐12, doi: 10.1117/12.789494.
dc.identifier.citedreferenceOrozco Suarez, D., A. Asensio Ramos, and J. Trujillo Bueno ( 2014 ), The magnetic field configuration of a solar prominence inferred from spectropolarimetric observations in the He I 10830 Å triplet, Astron. Astrophys., 566, A46, doi: 10.1051/0004-6361/201322903.
dc.identifier.citedreferencePaletou, F., A. López Ariste, V. Bommier, and M. Semel ( 2001 ), Full‐stokes spectro‐polarimetry of solar prominences, Astron. Astrophys., 375, L39, doi: 10.1051/0004-6361:20010927.
dc.identifier.citedreferencePenn, M. J., H. Lin, S. Tomczyk, D. F. Elmore, and P. G. Judge ( 2004 ), Background induced measurement errors of the coronal intensity, density, velocity and magnetic field, Sol. Phys., 222, 61 – 78, doi: 10.1023/B:SOLA.0000036850.34404.5f.
dc.identifier.citedreferencePizzo, V., G. Millward, A. Parsons, D. Biesecker, S. Hill, and D. Odstrcil ( 2011 ), Wang‐Sheeley‐Arge‐Enlil cone model transitions to operations, Space Weather, 9, S03004, doi: 10.1029/2011SW000663.
dc.identifier.citedreferencePlowman, J. ( 2014 ), Single‐point inversion of the coronal magnetic field, Astrophys. J., 792 ( 1 ), 23, doi: 10.1088/0004-637X/792/1/23.
dc.identifier.citedreferencePulkkinen, T. ( 2007 ), Space weather: Terrestrial perspective, Living Rev. Sol. Phys., 4 ( 1 ), 1.
dc.identifier.citedreferenceQuerfeld, C. W., L. L. House, R. N. Smartt, V. Bommier, and E. Landi Degl’Innocenti ( 1985 ), Vector magnetic fields in prominences. II—HeI D3 stokes profiles analysis for two quiescent prominences, Sol. Phys., 96, 277, doi: 10.1007/BF00149684.
dc.identifier.citedreferenceRachmeler, L. A., S. E. Gibson, J. B. Dove, C. R. DeVore, and Y. Fan ( 2013 ), Polarimetric properties of flux ropes and sheared arcades in coronal prominence cavities, Sol. Phys., 288, 617, doi: 10.1007/s11207-013-0325-5.
dc.identifier.citedreferenceRachmeler, L. A., S. J. Platten, C. Bethge, D. B. Seaton, and A. R. Yeates ( 2014 ), Observations of a hybrid double‐streamer/pseudostreamer in the solar corona, Astrophys. J. Lett., 787, L3, doi: 10.1088/2041-8205/787/1/L3.
dc.identifier.citedreferenceRoussev, I. I., T. G. Forbes, T. I. Gombosi, I. V. Sokolov, D. L. DeZeeuw, and J. Birn ( 2003 ), A three‐dimensional flux rope model for coronal mass ejections based on a loss of equilibrium, Astrophys. J., 588 ( 1 ), L45 – L48, doi: 10.1086/375442.
dc.identifier.citedreferenceSavcheva, A., and A. van Ballegooijen ( 2009 ), Nonlinear force‐free modeling of a long‐lasting coronal sigmoid, Astrophys. J., 703 ( 2 ), 1766 – 1777, doi: 10.1088/0004-637X/703/2/1766.
dc.identifier.citedreferenceScharmer, G. B. ( 2006 ), Comments on the optimization of high resolution Fabry‐Perot Filtergraphs, Astron. Astrophys., 447, 1111 – 1120, doi: 10.1051/0004-6361:20052981.
dc.identifier.citedreferenceScherrer, P. H., J. Schou, R. I. Bush, A. G. Kosovichev, and R. S. Bogart ( 2012 ), The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO), Sol. Phys., 275, 207, doi: 10.1007/s11207-011-9834-2.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.