Show simple item record

Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center

dc.contributor.authorJian, L. K.
dc.contributor.authorMacNeice, P. J.
dc.contributor.authorMays, M. L.
dc.contributor.authorTaktakishvili, A.
dc.contributor.authorOdstrcil, D.
dc.contributor.authorJackson, B.
dc.contributor.authorYu, H.‐s.
dc.contributor.authorRiley, P.
dc.contributor.authorSokolov, I. V.
dc.date.accessioned2016-10-17T21:19:55Z
dc.date.available2017-10-05T14:33:49Zen
dc.date.issued2016-08
dc.identifier.citationJian, L. K.; MacNeice, P. J.; Mays, M. L.; Taktakishvili, A.; Odstrcil, D.; Jackson, B.; Yu, H.‐s. ; Riley, P.; Sokolov, I. V. (2016). "Validation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center." Space Weather 14(8): 592-611.
dc.identifier.issn1542-7390
dc.identifier.issn1542-7390
dc.identifier.urihttps://hdl.handle.net/2027.42/134247
dc.description.abstractThe prediction of the background global solar wind is a necessary part of space weather forecasting. Several coronal and heliospheric models have been installed and/or recently upgraded at the Community Coordinated Modeling Center (CCMC), including the Wangâ Sheelyâ Arge (WSA)â Enlil model, MHDâ Aroundâ aâ Sphere (MAS)â Enlil model, Space Weather Modeling Framework (SWMF), and heliospheric tomography using interplanetary scintillation data. Ulysses recorded the last fast latitudinal scan from southern to northern poles in 2007. By comparing the modeling results with Ulysses observations over seven Carrington rotations, we have extended our thirdâ party validation from the previous nearâ Earth solar wind to middle to high latitudes, in the same late declining phase of solar cycle 23. Besides visual comparison, we have quantitatively assessed the models’ capabilities in reproducing the time series, statistics, and latitudinal variations of solar wind parameters for a specific range of model parameter settings, inputs, and grid configurations available at CCMC. The WSAâ Enlil model results vary with three different magnetogram inputs. The MASâ Enlil model captures the solar wind parameters well, despite its underestimation of the speed at middle to high latitudes. The new version of SWMF misses many solar wind variations probably because it uses lower grid resolution than other models. The interplanetary scintillationâ tomography cannot capture the latitudinal variations of solar wind well yet. Because the model performance varies with parameter settings which are optimized for different epochs or flow states, the performance metric study provided here can serve as a template that researchers can use to validate the models for the time periods and conditions of interest to them.Key PointsPerformance metrics for the global solar wind prediction are developedEight model combinations are validated with strengths and weaknesses identified for each modelEffect of model internal parameter settings and magnetogram input is discussed
dc.publisherAIP
dc.publisherWiley Periodicals, Inc.
dc.subject.otherspace weather
dc.subject.othermodeling
dc.subject.othersolar wind
dc.titleValidation for global solar wind prediction using Ulysses comparison: Multiple coronal and heliospheric models installed at the Community Coordinated Modeling Center
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelElectrical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134247/1/swe20343_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134247/2/swe20343.pdf
dc.identifier.doi10.1002/2016SW001435
dc.identifier.sourceSpace Weather
dc.identifier.citedreferenceRiley, P., J. A. Linker, Z. MikiÄ , and R. Lionello ( 2001b ), MHD modeling of the solar corona and inner heliosphere: Comparison with observations, in Space Weather, Geophys. Monogr. Ser., vol. 125, edited by P. Song, H. J. Singer, and G. L. Siscoe, pp. 159 â 167, AGU, Washington, D. C., doi: 10.1029/GM125p0159.
dc.identifier.citedreferenceOdstrÄ il, D., and V. J. Pizzo ( 1999b ), Threeâ dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow 2. CME launched adjacent to the streamer belt, J. Geophys. Res., 104, 493 â 503, doi: 10.1029/1998JA900038.
dc.identifier.citedreferenceOdstrÄ il, D., M. Dryer, and Z. Smith ( 1996 ), Propagation of an interplanetary shock along the heliospheric plasma sheet, J. Geophys. Res., 101, 19,973 â 19,986, doi: 10.1029/96JA00479.
dc.identifier.citedreferenceOran, R., B. van der Holst, E. Landi, M. Jin, I. V. Sokolov, and T. I. Gombosi ( 2013 ), A global waveâ driven magnetohydrodynamic solar model with a unified treatment of open and closed magnetic field topologies, Astrophys. J., 778, 176, doi: 10.1088/0004-637X/778/2/176.
dc.identifier.citedreferenceOwens, M. J., C. N. Arge, H. E. Spence, and A. Pembroke ( 2005 ), An eventâ based approach to validating solar wind speed predictions: Highâ speed enhancements in the Wangâ Sheeleyâ Arge model, J. Geophys. Res., 110, A12105, doi: 10.1029/2005JA011343.
dc.identifier.citedreferenceOwens, M. J., H. E. Spence, S. McGregor, W. J. Hughes, J. M. Quinn, C. N. Arge, P. Riley, J. Linker, and D. Odstrcil ( 2008 ), Metrics for solar wind prediction models: Comparison of empirical, hybrid, and physicsâ based schemes with 8â years of L1 observations, Space Weather, 6, S08001, doi: 10.1029/2007SW000380.
dc.identifier.citedreferencePierce, A. K. ( 1969 ), The solar program of the Kitt peak national observatory, Sol. Phys., 6, 498 â 503, doi: 10.1007/BF00146486.
dc.identifier.citedreferenceRiley, P., J. A. Linker, and Z. MikiÄ ( 2001a ), An empiricallyâ driven global MHD model of the solar corona and inner heliosphere, J. Geophys. Res., 106, 15,889 â 15,901, doi: 10.1029/2000JA000121.
dc.identifier.citedreferenceRiley, P., M. Benâ Nun, J. A. Linker, Z. Mikic, L. Svalgaard, J. Harvey, L. Bertello, T. Hoeksema, Y. Liu, and R. Ulrich ( 2014 ), A multiâ observatory interâ comparison of lineâ ofâ sight synoptic solar magnetograms, Sol. Phys., 289, 769 â 792, doi: 10.1007/s11207-013-0353-1.
dc.identifier.citedreferenceSchatten, K. H., J. M. Wilcox, and N. F. Ness ( 1969 ), A model of interplanetary and coronal magnetic fields, Sol. Phys., 6, 442 â 455, doi: 10.1007/BF00146478.
dc.identifier.citedreferenceScherrer, P. H., et al. ( 1995 ), The solar oscillation investigationâ Michelson Doppler imager, Sol. Phys., 162, 129 â 188, doi: 10.1007/BF00733429.
dc.identifier.citedreferenceScherrer, P. H., et al. ( 2012 ), The Helioseismic and Magnetic Imager (HMI) investigation for the Solar Dynamics Observatory (SDO), Sol. Phys., 275, 207 â 227, doi: 10.1007/s11207-011-9834-2.
dc.identifier.citedreferenceSokolov, I. V., B. van der Holst, R. Oran, C. Downs, I. Roussev, M. Jin, W. B. Manchester IV, R. M. Evans, and T. I. Gombosi ( 2013 ), Magnetohydrodynamic waves and coronal heating: Unifying empirical and MHD turbulence models, Astrophys. J., 764, 23, doi: 10.1088/0004-637X/764/1/23.
dc.identifier.citedreferenceTóth, G., et al. ( 2005 ), Space weather modeling framework: A new tool for the space science community, J. Geophys. Res., 110, A12226, doi: 10.1029/2005JA011126.
dc.identifier.citedreferenceTóth, G., et al. ( 2012 ), Adaptive numerical algorithms in space weather modeling, J. Comput. Phys., 231, 870 â 903, doi: 10.1016/j.jcp.2011.02.006.
dc.identifier.citedreferenceUlrich, R. K., S. Evans, J. E. Boyden, and L. Webster ( 2002 ), Mount Wilson synoptic magnetic fields: Improved instrumentation, calibration, and analysis applied to the 14 July 2000 flare and to the evolution of the dipole field, Astrophys. J. Suppl., 139, 259 â 279, doi: 10.1086/337948.
dc.identifier.citedreferenceUsmanov, A. V., M. L. Goldstein, B. P. Besser, and J. M. Fritzer ( 2000 ), A global MHD solar wind model with WKB Alfvén waves: Comparison with Ulysses data, J. Geophys. Res., 105 ( A6 ), 12,675 â 12,695, doi: 10.1029/1999JA000233.
dc.identifier.citedreferencevan der Holst, B., W. B. Manchester IV, R. A. Frazin, A. M. Vásquez, G. Tóth, and T. I. Gombosi ( 2010 ), A dataâ driven, twoâ temperature solar wind model with Alfvén waves, Astrophys. J., 725, 1373 â 1383, doi: 10.1088/0004-637X/725/1/1373.
dc.identifier.citedreferencevan der Holst, B., I. V. Sokolov, X. Meng, M. Jin, W. B. Manchester IV, G. Tóth, and T. I. Gombosi ( 2014 ), Alfvén wave solar model (AWSoM): Coronal heating, Astrophys. J., 782, 81, doi: 10.1088/0004-637X/782/2/81.
dc.identifier.citedreferenceVandas, M., and D. OdstrÄ il ( 2000 ), Magnetic cloud evolution: A comparison of analytical and numerical solutions, J. Geophys. Res., 105, 12,605 â 12,616, doi: 10.1029/2000JA900027.
dc.identifier.citedreferenceWang, Y. M., and N. R. Sheeley Jr. ( 1990a ), Solar wind speed and coronal fluxâ tube expansion, Astrophys. J., 355, 726 â 732, doi: 10.1086/168805.
dc.identifier.citedreferenceWang, Y. M., and N. R. Sheeley Jr. ( 1990b ), Magnetic flux transport and the sunspotâ cycle evolution of coronal holes and their wind streams, Astrophys. J., 365, 372 â 386, doi: 10.1086/169492.
dc.identifier.citedreferenceWang, Y. M., and N. R. Sheeley Jr. ( 1992 ), On potential field models of the solar corona, Astrophys. J., 392, 310 â 319, doi: 10.1086/171430.
dc.identifier.citedreferenceWenzel, K.â P., R. G. Marsden, D. E. Page, and E. J. Smith ( 1992 ), The Ulysses mission, Astron. Astrophys. Suppl. Ser., 92, 207 â 219.
dc.identifier.citedreferenceYu, H.â S., B. V. Jackson, Y.â H. Yang, N.â H. Chen, A. Buffington, and P. P. Hick ( 2016 ), 3D reconstruction of the polar jet of 17 June 2011 and its presence in the background solar wind, J. Geophys. Res. Space Physics, 121, 4985 â 4997, doi: 10.1002/2016JA022503.
dc.identifier.citedreferenceZhao, X., and J. T. Hoeksema ( 1995 ), Prediction of the interplanetary magnetic field strength, J. Geophys. Res., 100, 19 â 33, doi: 10.1029/94JA02266.
dc.identifier.citedreferenceHewish, A., P. F. Scott, and D. Wills ( 1964 ), Interplanetary scintillation of small diameter radio sources, Nature, 203, 1214 â 1217, doi: 10.1038/2031214a0.
dc.identifier.citedreferenceAibéo, A., J. J. G. Lima, and C. Sauty ( 2007 ), Application of a MHD hybrid solar wind model with latitudinal dependences to Ulysses data at minimum, Astron. Astrophys., 461, 685 â 694, doi: 10.1051/0004-6361:20065123.
dc.identifier.citedreferenceAltschuler, M. A., and G. Newkirk Jr. ( 1969 ), Magnetic fields and the structure of the solar corona, Sol. Phys., 9, 131 â 149, doi: 10.1007/BF00145734.
dc.identifier.citedreferenceArge, C. N., and V. J. Pizzo ( 2000 ), Improvement in the prediction of solar wind conditions using realâ time solar magnetic field updates, J. Geophys. Res., 105, 10,465 â 10,479, doi: 10.1029/1999JA000262.
dc.identifier.citedreferenceArge, C. N., D. Odstrcil, V. J. Pizzo, and L. Mayer ( 2002 ), Improved method for specifying solar wind speed near the Sun, in Solar Wind Ten, AIP Conf. Proc., vol. 679, edited by M. Velli and R. Bruno, pp. 190 â 193, AIP, Melville, New York, doi: 10.1063/1.1618574.
dc.identifier.citedreferenceArge, C. N., C. J. Henney, J. Koller, C. R. Compeau, S. Young, D. MacKenzie, A. Fay, and J. W. Harvey ( 2010 ), Air force data assimilative photospheric flux transport (ADAPT) model, in Solar Wind 12, AIP Conf. Proc., vol. 1216, edited by M. Maksimovic et al., pp. 343 â 346, AIP, Melville, New York, doi: 10.1063/1.3395870.
dc.identifier.citedreferenceArge, C. N., C. J. Henney, J. Koller, W. A. Toussaint, J. W. Harvey, and S. Young ( 2011 ), Improving data drivers for coronal and solar wind models, in 5th International Conference of Numerical Modeling of Space Plasma Flows: ASTRONUMâ 2010, ASP Conf. Ser., vol. 444, edited by N. V. Pogorelov, E. Audit, and G. P. Zank, pp. 99 â 104, ASP, San Francisco, Calif.
dc.identifier.citedreferenceArge, C. N., C. J. Henney, I. G. Hernandez, W. A. Toussaint, J. Koller, and H. C. Godinez ( 2013 ), Modeling the corona and solar wind using ADAPT maps that include farâ side observations, in Solar Wind 13, AIP Conf. Proc., vol. 1539, edited by G. P. Zank, et al., pp. 11 â 14, AIP, Melville, New York, doi: 10.1063/1.4810977.
dc.identifier.citedreferenceBain, H. M., M. L. Mays, J. G. Luhmann, Y. Li, L. K. Jian, and D. Odstrcil ( 2016 ), Shock connectivity in the 2010 August and 2012 July solar energetic particle events inferred from observations and ENLIL modeling, Astrophys. J., 825, 1, doi: 10.3847/0004-637X/825/1/1.
dc.identifier.citedreferenceCase, A. W., H. E. Spence, M. J. Owens, P. Riley, and D. Odstrcil ( 2008 ), Ambient solar wind’s effect on ICME transit time, Geophys. Res. Lett., 35, L15105, doi: 10.1029/2008GL034493.
dc.identifier.citedreferenceColes, W. A. ( 1978 ), Interplanetary scintillation, Space Sci. Rev., 21, 411 â 425, doi: 10.1007/BF00173067.
dc.identifier.citedreferenceGandorfer, A., S. K. Solanki, J. Woch, V. Martínez Pillet, A. Alvarez Herrero, and T. Appourchaux ( 2011 ), The Solar Orbiter mission and its polarimetric and helioseismic imager (SO/PHI), J. Phys. Conf. Ser., 271, 012086, doi: 10.1088/1742-6596/271/1/012086.
dc.identifier.citedreferenceGibson, S. E., et al. ( 2011 ), The whole heliospheric interval in the context of a long and structured solar minimum: An overview from Sun to Earth, Sol. Phys., 274, 5 â 27, doi: 10.1007/s11207-011-9921-4.
dc.identifier.citedreferenceGopalswamy, N., P. Mäkelä, H. Xie, S. Akiyama, and S. Yashiro ( 2009 ), CME interactions with coronal holes and their interplanetary consequences, J. Geophys. Res., 114, A00A22, doi: 10.1029/2008JA013686.
dc.identifier.citedreferenceGuhathakurta, M., E. C. Sittler, and D. McComas ( 1999 ), Semiâ empirical MHD model of the solar wind and its comparison with Ulysses, Space Sci. Rev., 87, 199 â 206.
dc.identifier.citedreferenceHarvey, J. W., et al. ( 1996 ), The Global Oscillation Network Group (GONG) project, Science, 272, 1284 â 1286, doi: 10.1126/science.272.5266.1284.
dc.identifier.citedreferenceIssautier, K., R. M. Skoug, J. T. Gosling, S. P. Gary, and D. J. McComas ( 2001 ), Solar wind plasma parameters on Ulysses: Detailed comparison between the URAP and SWOOPS experiments, J. Geophys. Res., 106, 15,665 â 15,675, doi: 10.1029/2000JA000412.
dc.identifier.citedreferenceJackson, B. V., P. L. Hick, M. Kojima, and A. Yokobe ( 1997 ), Heliospheric tomography using interplanetary scintillation observations, Phys. Chem. Earth, 22, 425 â 434, doi: 10.1016/S0079-1946(97)00170-5.
dc.identifier.citedreferenceJackson, B. V., P. L. Hick, M. Kojima, and A. Yokobe ( 1998 ), Heliospheric tomography using interplanetary scintillation observations: 1. Combined Nagoya and Cambridge data, J. Geophys. Res., 103, 12,049 â 12,067, doi: 10.1029/97JA02528.
dc.identifier.citedreferenceJackson, B. V., P. P. Hick, A. Buffington, M. M. Bisi, J. M. Clover, M. Tokumaru, M. Kojima, and K. Fujiki ( 2011 ), Threeâ dimensional reconstruction of heliospheric structure using iterative tomography: A review, J. Atoms. Sol. Terr. Phys., 73, 1214 â 1227, doi: 10.1016/j.jastp.2010.10.007.
dc.identifier.citedreferenceJackson, B. V., H.â S. Yu, A. Buffington, and P. P. Hick ( 2014 ), The dynamic character of the polar solar wind, Astrophys. J., 79, 54, doi: 10.1088/0004-637X/793/1/54.
dc.identifier.citedreferenceJian, L. K., C. T. Russell, J. G. Luhmann, P. J. MacNeice, D. Odstrcil, P. Riley, J. A. Linker, R. M. Skoug, and J. T. Steinberg ( 2011a ), Comparison of observations at ACE and Ulysses with Enlil model results: Stream interaction regions during Carrington rotations 2016â 2018, Sol. Phys., 273, 179 â 203, doi: 10.1007/s11207-011-9858-7.
dc.identifier.citedreferenceJian, L. K., C. T. Russell, and J. G. Luhmann ( 2011b ), Comparing solar minimum 23/24 with historical solar wind records at 1 AU, Sol. Phys., 274, 321 â 344, doi: 10.1007/s11207-011-9737-2.
dc.identifier.citedreferenceJian, L. K., P. J. MacNeice, A. Taktakishvili, D. Odstrcil, B. Jackson, H.â S. Yu, P. Riley, I. V. Sokolov, and R. M. Evans ( 2015 ), Validation for solar wind prediction at Earth: Comparison of coronal and heliospheric models installed at the CCMC, Space Weather, 13, 316 â 338, doi: 10.1002/2015SW001174.
dc.identifier.citedreferenceLee, C. O., J. G. Luhmann, D. Odstrcil, P. J. MacNeice, I. de Pater, P. Riley, and C. N. Arge ( 2009 ), The solar wind at 1â AU during the declining phase of solar cycle 23: Comparison of 3D numerical model results with observations, Sol. Phys., 254, 155 â 183, doi: 10.1007/s11207-008-9280-y.
dc.identifier.citedreferenceLinker, J. A., Z. MikiÄ , and D. D. Schnack ( 1996 ), Global coronal modeling and space weather prediction, in Solar Drivers of Interplanetary and Terrestrial Disturbances, ASP Conf. Ser., vol. 95, edited by K. S. Balasubramaniam, S. L. Keil, and R. N. Smartt, pp. 208 â 218, ASP, San Francisco, Calif.
dc.identifier.citedreferenceLinker, J. A., Z. MikiÄ , R. Lionello, P. Riley, T. Amari, and D. Odstrcil ( 2003 ), Flux cancellation and coronal mass ejections, Phys. Plasmas, 10, 1971 â 1978, doi: 10.1063/1.1563668.
dc.identifier.citedreferenceLionello, R., J. A. Linker, and Z. MikiÄ ( 2009 ), Multispectral emission of the Sun during the first whole Sun month: Magnetohydrodynamic simulations, Astrophys. J., 690, 902 â 912, doi: 10.1088/0004-637X/690/1/902.
dc.identifier.citedreferenceMacNeice, P. ( 2009a ), Validation of community models: Identifying events in space weather model timelines, Space Weather, 7, S06004, doi: 10.1029/2009SW000463.
dc.identifier.citedreferenceMacNeice, P. ( 2009b ), Validation of community models: 2. Development of a baseline using the Wangâ Sheeleyâ Arge model, Space Weather, 7, S12002, doi: 10.1029/2009SW000489.
dc.identifier.citedreferenceManchester, W. B., J. U. Kozyra, S. T. Lepri, and B. Lavraud ( 2014 ), Simulation of magnetic cloud erosion during propagation, J. Geophys. Res. Space Physics, 119, 5499 â 5464, doi: 10.1002/2014JA019882.
dc.identifier.citedreferenceMikiÄ , Z., and J. A. Linker ( 1994 ), Disruption of coronal magnetic field arcades, Astrophys. J., 430, 898 â 912, doi: 10.1086/174460.
dc.identifier.citedreferenceMikiÄ , Z., and J. A. Linker ( 1996 ), The largeâ scale structure of the solar corona and inner heliosphere, in Solar Wind Eight, AIP Conf. Proc., vol. 382, edited by D. Winterhalter et al., pp. 104 â 107, AIP, Woodbury, N. Y., doi: 10.1063/1.51370.
dc.identifier.citedreferenceMüller, D., R. G. Marsden, O. C. S. Cyr, and H. R. Gilbert ( 2013 ), Solar Orbiter: Exploring the Sunâ heliosphere connection, Sol. Phys., 285, 25 â 70, doi: 10.1007/s11207-012-0085-7.
dc.identifier.citedreferenceOdstrÄ il, D. ( 1994 ), Interaction of solar wind streams and related small structures, J. Geophys. Res., 99, 17,653 â 17,671, doi: 10.1029/94JA01225.
dc.identifier.citedreferenceOdstrÄ il, D., and V. J. Pizzo ( 1999a ), Threeâ dimensional propagation of coronal mass ejections (CMEs) in a structured solar wind flow 1. CME launched within the streamer belt, J. Geophys. Res., 104, 483 â 492, doi: 10.1029/1998JA900019.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.