Show simple item record

Does bariatric surgery improve adipose tissue function?

dc.contributor.authorFrikke‐schmidt, H.
dc.contributor.authorO’Rourke, R. W.
dc.contributor.authorLumeng, C. N.
dc.contributor.authorSandoval, D. A.
dc.contributor.authorSeeley, R. J.
dc.date.accessioned2016-10-17T21:19:59Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationFrikke‐schmidt, H. ; O’Rourke, R. W.; Lumeng, C. N.; Sandoval, D. A.; Seeley, R. J. (2016). "Does bariatric surgery improve adipose tissue function?." Obesity Reviews 17(9): 795-809.
dc.identifier.issn1467-7881
dc.identifier.issn1467-789X
dc.identifier.urihttps://hdl.handle.net/2027.42/134250
dc.publisherWiley Periodicals, Inc.
dc.subject.otherAdipose
dc.subject.otherobesity
dc.subject.otherbariatric surgery
dc.titleDoes bariatric surgery improve adipose tissue function?
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMedicine (General)
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134250/1/obr12429_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134250/2/obr12429.pdf
dc.identifier.doi10.1111/obr.12429
dc.identifier.sourceObesity Reviews
dc.identifier.citedreferenceLynch L, Nowak M, Varghese B et al. Adipose tissue invariant NKT cells protect against dietâ induced obesity and metabolic disorder through regulatory cytokine production. Immunity 2012; 37: 574 â 87.
dc.identifier.citedreferenceButte NF, Brandt ML, Wong WW et al. Energetic adaptations persist after bariatric surgery in severely obese adolescents. Obesity 2015; 23: 591 â 601.
dc.identifier.citedreferenceChang EJ, Lee SK, Song YS et al. ILâ 34 is associated with obesity, chronic inflammation, and insulin resistance. J Clin Endocrinol Metab 2014; 99: E1263 â E71.
dc.identifier.citedreferenceMorenoâ Navarrete JM, Novelle MG, Catalan V et al. Insulin resistance modulates ironâ related proteins in adipose tissue. Diabetes Care 2014; 37: 1092 â 100.
dc.identifier.citedreferenceIannelli A, Martini F, Rodolphe A et al. Body composition, anthropometrics, energy expenditure, systemic inflammation, in premenopausal women 1â year after laparoscopic Rouxâ enâ Y gastric bypass. Surg Endosc 2014; 28: 500 â 07.
dc.identifier.citedreferenceBarazzoni R, Palmisano S, Gortan Cappellari G et al. Gastric bypassâ induced weight loss alters obesityâ associated patterns of plasma pentraxinâ 3 and systemic inflammatory markers. Surg Obes Relat Dis: official journal of the American Society for Bariatric Surgery 2016; 12: 23 â 32.
dc.identifier.citedreferenceMocanu AO, Mulya A, Huang H et al. Effect of Rouxâ enâ Y gastric bypass on the NLRP3 inflammasome in adipose tissue from obese rats. PLoS One 2015; 10 e0139764.
dc.identifier.citedreferenceVaittinen M, Walle P, Kuosmanen E et al. FADS2 genotype regulates deltaâ 6 desaturase activity and inflammation in human adipose tissue. J Lipid Res 2016; 57: 56 â 65.
dc.identifier.citedreferenceOliveira Cda S, Beserra BT, Cunha RS et al. Impact of Rouxâ enâ Y gastric bypass on lipid and inflammatory profiles. Rev Col Bras Cir 2015; 42: 305 â 10.
dc.identifier.citedreferenceGjessing HR, Nielsen HJ, Mellgren G, Gudbrandsen OA. Energy intake, nutritional status and weight reduction in patients one year after laparoscopic sleeve gastrectomy. Springer plus 2013; 2: 352.
dc.identifier.citedreferenceMoncada R, Rodriguez A, Becerril S et al. Sleeve gastrectomy decreases body weight, wholeâ body adiposity, and blood pressure even in aged dietâ induced obese rats. Obes Surg 2015. doi: 10.1007/s11695â 015â 1919â 9.
dc.identifier.citedreferenceMoncada R, Becerril S, Rodriguez A et al. Sleeve gastrectomy reduces body weight and improves metabolic profile also in obesityâ prone rats. Obes Surg 2015. doi: 10.1007/s11695â 015â 1915â 0.
dc.identifier.citedreferenceWen Y, Lin N, Yan HT et al. Downâ regulation of renal gluconeogenesis in type II diabetic rats following Rouxâ enâ Y gastric bypass surgery: a potential mechanism in hypoglycemic effect. Obes Facts 2015; 8: 110 â 24.
dc.identifier.citedreferenceKawano Y, Ohta M, Hirashita T, Masuda T, Inomata M, Kitano S. Effects of sleeve gastrectomy on lipid metabolism in an obese diabetic rat model. Obes Surg 2013; 23: 1947 â 56.
dc.identifier.citedreferenceCummings BP, Bettaieb A, Graham JL et al. Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCDâ T2DM rats. Endocrinology 2012; 153: 3620 â 32.
dc.identifier.citedreferenceRideout DA, Peng Y, Rakita SS et al. Rouxâ enâ Y gastric bypass alters tumor necrosis factorâ alpha but not adiponectin signaling in immediate postoperative period in obese rats. Surg Obes Relat Dis 2010; 6: 676 â 80.
dc.identifier.citedreferenceNausheen S, Shah IH, Pezeshki A, Sigalet DL, Chelikani PK. Effects of sleeve gastrectomy and ileal transposition, alone and in combination, on food intake, body weight, gut hormones, and glucose metabolism in rats. Am J Physiol EndocrinolMetab 2013; 305: E507 â E18.
dc.identifier.citedreferenceRodriguez A, Becerril S, Valenti V et al. Shortâ term effects of sleeve gastrectomy and caloric restriction on blood pressure in dietâ induced obese rats. Obes Surg 2012; 22: 1481 â 90.
dc.identifier.citedreferenceBielohuby M, Stemmer K, Berger J et al. Carbohydrate content of postâ operative diet influences the effect of vertical sleeve gastrectomy on body weight reduction in obese rats. Obes Surg 2012; 22: 140 â 51.
dc.identifier.citedreferenceOberbach A, Neuhaus J, Schlichting N, Kugler J, Baumann S, Till H. Sleeve gastrectomy reduces xanthine oxidase and uric acid in a rat model of morbid obesity. Surg Obes Relat Dis 2014; 10: 684 â 90.
dc.identifier.citedreferenceSchneck AS, Iannelli A, Patouraux S et al. Effects of sleeve gastrectomy in high fat dietâ induced obese mice: respective role of reduced caloric intake, white adipose tissue inflammation and changes in adipose tissue and ectopic fat depots. Surg Endosc 2014; 28: 592 â 602.
dc.identifier.citedreferenceArble DM, Sandoval DA, Seeley RJ. Mechanisms underlying weight loss and metabolic improvements in rodent models of bariatric surgery. Diabetologia 2015; 58: 211 â 20.
dc.identifier.citedreferenceStefater MA, Wilsonâ Perez HE, Chambers AP, Sandoval DA, Seeley RJ. All bariatric surgeries are not created equal: insights from mechanistic comparisons. Endocr Rev 2012; 33: 595 â 622.
dc.identifier.citedreferenceAngrisani L, Santonicola A, Iovino P, Formisano G, Buchwald H, Scopinaro N. Bariatric Surgery Worldwide 2013. Obes Surg 2015; 25: 1822 â 32.
dc.identifier.citedreferenceCarlin AM, Zeni TM, English WJ et al. The comparative effectiveness of sleeve gastrectomy, gastric bypass, and adjustable gastric banding procedures for the treatment of morbid obesity. Ann Surg 2013; 257: 791 â 7.
dc.identifier.citedreferenceGalanakis CG, Daskalakis M, Manios A, Xyda A, Karantanas AH, Melissas J. Computed tomographyâ based assessment of abdominal adiposity changes and their impact on metabolic alterations following bariatric surgery. World J Surg 2014; 39: 417 â 23.
dc.identifier.citedreferenceDi Taranto G, Cicione C, Visconti G et al. Qualitative and quantitative differences of adiposeâ derived stromal cells from superficial and deep subcutaneous lipoaspirates: a matter of fat. Cytotherapy 2015; 17: 1076 â 89.
dc.identifier.citedreferenceBoyko EJ, Fujimoto WY, Leonetti DL, Newellâ Morris L. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care 2000; 23: 465 â 71.
dc.identifier.citedreferenceLiu J, Fox CS, Hickson DA et al. Impact of abdominal visceral and subcutaneous adipose tissue on cardiometabolic risk factors: the Jackson Heart Study. J Clin Endocrinol Metab 2010; 95: 5419 â 26.
dc.identifier.citedreferenceGallagher D, Kelley DE, Yim JE et al. Adipose tissue distribution is different in type 2 diabetes. Am J Clin Nutr 2009; 89: 807 â 14.
dc.identifier.citedreferenceIbrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Int J Assoc Study Obes 2010; 11: 11 â 8.
dc.identifier.citedreferenceLima MM, Pareja JC, Alegre SM et al. Visceral fat resection in humans: effect on insulin sensitivity, betaâ cell function, adipokines, and inflammatory markers. Obesity (SilverSpring) 2013; 21: E182 â E89.
dc.identifier.citedreferenceFabbrini E, Tamboli RA, Magkos F et al. Surgical removal of omental fat does not improve insulin sensitivity and cardiovascular risk factors in obese adults. Gastroenterology 2010; 139: 448 â 55.
dc.identifier.citedreferenceDunn JP, Abumrad NN, Breitman I et al. Hepatic and peripheral insulin sensitivity and diabetes remission at 1â month after Rouxâ enâ Y gastric bypass surgery in patients randomized to omentectomy. Diabetes Care 2012; 35: 137 â 42.
dc.identifier.citedreferenceTamboli RA, Hajri T, Jiang A et al. Reduction in inflammatory gene expression in skeletal muscle from Rouxâ enâ Y gastric bypass patients randomized to omentectomy. PLoS One 2011; 6 e28577.
dc.identifier.citedreferenceSdralis E, Argentou M, Mead N, Kehagias I, Alexandridis T, Kalfarentzos F. A prospective randomized study comparing patients with morbid obesity submitted to sleeve gastrectomy with or without omentectomy. Obes Surg 2013; 23: 965 â 71.
dc.identifier.citedreferenceAndersson DP, Thorell A, Lofgren P et al. Omentectomy in addition to gastric bypass surgery and influence on insulin sensitivity: a randomized double blind controlled trial. Clin Nutr 2014; 33: 991 â 6.
dc.identifier.citedreferenceKeidar A, Appelbaum L, Schweiger C et al. Baseline abdominal lipid partitioning is associated with the metabolic response to bariatric surgery. Obes Surg 2014; 24: 1709 â 16.
dc.identifier.citedreferenceGaborit B, Abdesselam I, Kober F et al. Ectopic fat storage in the pancreas using Hâ MRS: importance of diabetic status and modulation with bariatric surgeryâ induced weight loss. Int J Obes (Lond) 2014; 39: 480 â 7.
dc.identifier.citedreferenceFaria G, Pestana D, Aral M et al. Metabolic score: insights on the development and prediction of remission of metabolic syndrome after gastric bypass. Ann Surg 2014; 260: 279 â 86.
dc.identifier.citedreferenceToroâ Ramos T, Goodpaster BH, Janumala I et al. Continued loss in visceral and intermuscular adipose tissue in weightâ stable women following bariatric surgery. Obesity 2015; 23: 62 â 9.
dc.identifier.citedreferenceKim MK, Kim W, Kwon HS, Baek KH, Kim EK, Song KH. Effects of bariatric surgery on metabolic and nutritional parameters in severely obese Korean patients with type 2 diabetes: a prospective 2â year follow up. J Diabetes Investig 2014; 5: 221 â 27.
dc.identifier.citedreferenceYoon DY, Kim HK, Kim JA et al. Changes in the abdominal fat distribution after gastrectomy: computed tomography assessment. ANZ J Surg 2007; 77: 121 â 25.
dc.identifier.citedreferenceBoettcher M, Machann J, Stefan N et al. Intermuscular adipose tissue (IMAT): association with other adipose tissue compartments and insulin sensitivity. Journal of magnetic resonance imaging: JMRI 2009; 29: 1340 â 5.
dc.identifier.citedreferenceHenninger AM, Eliasson B, Jenndahl LE, Hammarstedt A. Adipocyte hypertrophy, inflammation and fibrosis characterize subcutaneous adipose tissue of healthy, nonâ obese subjects predisposed to type 2 diabetes. PLoS One 2014; 9 e105262.
dc.identifier.citedreferenceBays HE, Gonzalezâ Campoy JM, Bray GA et al. Pathogenic potential of adipose tissue and metabolic consequences of adipocyte hypertrophy and increased visceral adiposity. Expert Rev Cardiovasc Ther 2008; 6: 343 â 68.
dc.identifier.citedreferenceO’Connell J, Lynch L, Cawood TJ et al. The relationship of omental and subcutaneous adipocyte size to metabolic disease in severe obesity. PLoS One 2010; 5 e9997.
dc.identifier.citedreferenceGoossens GH, Bizzarri A, Venteclef N et al. Increased adipose tissue oxygen tension in obese compared with lean men is accompanied by insulin resistance, impaired adipose tissue capillarization, and inflammation. Circulation 2011; 124: 67 â 76.
dc.identifier.citedreferenceJohannsen DL, Tchoukalova Y, Tam CS et al. Effect of 8â weeks of overfeeding on ectopic fat deposition and insulin sensitivity: testing the â adipose tissue expandabilityâ hypothesis. Diabetes Care 2014; 37: 2789 â 97.
dc.identifier.citedreferenceCotillard A, Poitou C, Torcivia A et al. Adipocyte size threshold matters: link with risk of type 2 diabetes and improved insulin resistance after gastric bypass. J Clin Endocrinol Metab 2014; 99: E1466 â 70.
dc.identifier.citedreferenceCancello R, Zulian A, Gentilini D et al. Permanence of molecular features of obesity in subcutaneous adipose tissue of exâ obese subjects. Int J Obes (Lond) 2013; 37: 867 â 73.
dc.identifier.citedreferenceAghamohammadzadeh R, Greenstein AS, Yadav R et al. Effects of bariatric surgery on human small artery function: evidence for reduction in perivascular adipocyte inflammation, and the restoration of normal anticontractile activity despite persistent obesity. J Am Coll Cardiol 2013; 62: 128 â 35.
dc.identifier.citedreferenceAndersson DP, Eriksson HD, Thorell A et al. Changes in subcutaneous fat cell volume and insulin sensitivity after weight loss. Diabetes Care 2014; 37: 1831 â 36.
dc.identifier.citedreferenceZhang H, Wang Y, Zhang J, Potter BJ, Sowers JR, Zhang C. Bariatric surgery reduces visceral adipose inflammation and improves endothelial function in type 2 diabetic mice. Arterioscler Thromb Vasc Biol 2011; 31: 2063 â 69.
dc.identifier.citedreferenceMendezâ Gimenez L, Becerril S, Moncada R et al. Sleeve gastrectomy reduces hepatic steatosis by improving the coordinated regulation of aquaglyceroporins in adipose tissue and liver in obese rats. Obes Surg 2015; 25: 1723 â 34.
dc.identifier.citedreferenceCummings BP, Strader AD, Stanhope KL et al. Ileal interposition surgery improves glucose and lipid metabolism and delays diabetes onset in the UCDâ T2DM rat. Gastroenterology 2010; 138: 2437 â 46 46.
dc.identifier.citedreferenceNadreau E, Baraboi ED, Samson P et al. Effects of the biliopancreatic diversion on energy balance in the rat. Int J Obes (Lond) 2006; 30: 419 â 29.
dc.identifier.citedreferenceMauriege P, Prud’homme D, Lemieux S, Tremblay A, Despres JP. Regional differences in adipose tissue lipolysis from lean and obese women: existence of postreceptor alterations. Am J Physiol 1995; 269: E341 â 50.
dc.identifier.citedreferenceArner P, Ostman J. Relationship between the tissue level of cyclic AMP and the fat cell size of human adipose tissue. J Lipid Res 1978; 19: 613 â 8.
dc.identifier.citedreferenceSancho V, Trigo MV, Martinâ Duce A et al. Effect of GLPâ 1 on Dâ glucose transport, lipolysis and lipogenesis in adipocytes of obese subjects. Int J Mol Med 2006; 17: 1133 â 7.
dc.identifier.citedreferenceImbeault P, Chevrier J, Dewailly E et al. Increase in plasma pollutant levels in response to weight loss in humans is related to in vitro subcutaneous adipocyte basal lipolysis. Int J Obes Relat Metab Disord: journal of the International Association for the Study of Obesity 2001; 25: 1585 â 91.
dc.identifier.citedreferenceBerman DM, Nicklas BJ, Ryan AS, Rogus EM, Dennis KE, Goldberg AP. Regulation of lipolysis and lipoprotein lipase after weight loss in obese, postmenopausal women. Obes Res 2004; 12: 32 â 9.
dc.identifier.citedreferenceHernandez TL, Sutherland JP, Wolfe P et al. Lack of suppression of circulating free fatty acids and hypercholesterolemia during weight loss on a highâ fat, lowâ carbohydrate diet. Am J Clin Nutr 2010; 91: 578 â 85.
dc.identifier.citedreferenceReynisdottir S, Langin D, Carlstrom K, Holm C, Rossner S, Arner P. Effects of weight reduction on the regulation of lipolysis in adipocytes of women with upperâ body obesity. Clin Sci 1995; 89: 421 â 9.
dc.identifier.citedreferenceKullberg J, Sundbom M, Haenni A et al. Gastric bypass promotes more lipid mobilization than a similar weight loss induced by lowâ calorie diet. J Obes 2011; 2011: 959601.
dc.identifier.citedreferenceCamastra S, Gastaldelli A, Mari A et al. Early and longer term effects of gastric bypass surgery on tissueâ specific insulin sensitivity and beta cell function in morbidly obese patients with and without type 2 diabetes. Diabetologia 2011; 54: 2093 â 102.
dc.identifier.citedreferencePardina E, Ferrer R, Baenaâ Fustegueras JA et al. Only Câ reactive protein, but not TNFâ alpha or IL6, reflects the improvement in inflammation after bariatric surgery. Obes Surg 2012; 22: 131 â 39.
dc.identifier.citedreferenceSoriguer F, Garciaâ Serrano S, Garciaâ Almeida JM et al. Changes in the serum composition of freeâ fatty acids during an intravenous glucose tolerance test. Obesity (SilverSpring) 2009; 17: 10 â 15.
dc.identifier.citedreferenceKim MK, Jang EH, Hong OK et al. Changes in serum levels of bone morphogenic protein 4 and inflammatory cytokines after bariatric surgery in severely obese korean patients with type 2 diabetes. Int J Endocrinol 2013; 2013: 681205.
dc.identifier.citedreferenceCarvalho BM, Oliveira AG, Ueno M et al. Modulation of doubleâ stranded RNAâ activated protein kinase in insulin sensitive tissues of obese humans. Obesity (SilverSpring) 2013; 21: 2452 â 57.
dc.identifier.citedreferenceMaymoâ Masip E, Fernandezâ Veledo S, Garcia EA et al. The rise of soluble TWEAK levels in severely obese subjects after bariatric surgery may affect adipocyteâ cytokine production induced by TNFalpha. J Clin Endocrinol Metab 2013; 98: E1323 â E33.
dc.identifier.citedreferenceDharuri H, ’t Hoen PA, van Klinken JB et al. Downregulation of the acetylâ CoA metabolic network in adipose tissue of obese diabetic individuals and recovery after weight loss. Diabetologia 2014; 57: 2384 â 92.
dc.identifier.citedreferenceSams VG, Blackledge C, Wijayatunga N et al. Effect of bariatric surgery on systemic and adipose tissue inflammation. Surg Endosc 2015. doi: 10.1007/s00464â 015â 4638â 3.
dc.identifier.citedreferenceXu J, Donepudi AC, Moscovitz JE, Slitt AL. Keap1â knockdown decreases fastingâ induced fatty liver via altered lipid metabolism and decreased fatty acid mobilization from adipose tissue. PLoS One 2013; 8 e79841.
dc.identifier.citedreferenceChambers KT, Chen Z, Crawford PA et al. Liverâ specific PGCâ 1beta deficiency leads to impaired mitochondrial function and lipogenic response to fastingâ refeeding. PLoS One 2012; 7 e52645.
dc.identifier.citedreferenceLiang G, Yang J, Horton JD, Hammer RE, Goldstein JL, Brown MS. Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory elementâ binding proteinâ 1c. J Biol Chem 2002; 277: 9520 â 8.
dc.identifier.citedreferenceCurry TB, Roberts SK, Basu R et al. Gastric bypass surgery is associated with nearâ normal insulin suppression of lipolysis in nondiabetic individuals. Am J Physiol Endocrinol Metab 2011; 300: E746 â E51.
dc.identifier.citedreferencede Weijer BA, Aarts E, Janssen IM et al. Hepatic and peripheral insulin sensitivity do not improve 2â weeks after bariatric surgery. Obesity 2013; 21: 1143 â 7.
dc.identifier.citedreferenceAlbers PH, Bojsenâ Moller KN, Dirksen C et al. Enhanced insulin signaling in human skeletal muscle and adipose tissue following gastric bypass surgery. Am J Physiol Regul Integr Comp Physiol 2015; 309: R510 â 24.
dc.identifier.citedreferenceLi SQ, Zhou Y, Wang Y, Liu Y, Geng DH, Liu JG. Upregulation of IRSâ 1 expression in Gotoâ Kakizaki rats following Rouxâ enâ Y gastric bypass surgery: resolution of type 2 diabetes? Tohoku J Exp Med 2011; 225: 179 â 86.
dc.identifier.citedreferenceBonhomme S, Guijarro A, Keslacy S et al. Gastric bypass upâ regulates insulin signaling pathway. Nutrition 2011; 27: 73 â 80.
dc.identifier.citedreferenceCummings BP, Bettaieb A, Graham JL et al. Bileâ acidâ mediated decrease in endoplasmic reticulum stress: a potential contributor to the metabolic benefits of ileal interposition surgery in UCDâ T2DM rats. Dis Model Mech 2013; 6: 443 â 56.
dc.identifier.citedreferenceCollins P, Williams G. Drug treatment of obesity: from past failures to future successes? Br J Clin Pharmacol 2001; 51: 13 â 25.
dc.identifier.citedreferenceKoppo K, Siklovaâ Vitkova M, Klimcakova E et al. Catecholamine and insulin control of lipolysis in subcutaneous adipose tissue during longâ term dietâ induced weight loss in obese women. Am J Physiol Endocrinol Metab 2012; 302: E226 â 32.
dc.identifier.citedreferenceBairras C, Mauriege P, Bukowiecki L, Atgie C. Regulation of lypolysis in white adipose tissues of lean and obese Zucker rats. J Physiol Biochem 2007; 63: 287 â 96.
dc.identifier.citedreferenceLambert GW, Straznicky NE, Lambert EA, Dixon JB, Schlaich MP. Sympathetic nervous activation in obesity and the metabolic syndromeâ causes, consequences and therapeutic implications. Pharmacol Ther 2010; 126: 159 â 72.
dc.identifier.citedreferenceKaartinen JM, LaNoue KF, Martin LF, Vikman HL, Ohisalo JJ. Betaâ adrenergic responsiveness of adenylate cyclase in human adipocyte plasma membranes in obesity and after massive weight reduction. Metabolism 1995; 44: 1288 â 92.
dc.identifier.citedreferenceNeinast MD, Frank AP, Zechner JF et al. Activation of natriuretic peptides and the sympathetic nervous system following Rouxâ enâ Y gastric bypass is associated with gonadal adipose tissues browning. Mol Metab 2015; 4: 427 â 36.
dc.identifier.citedreferenceMauriege P, Imbeault P, Langin D et al. Regional and gender variations in adipose tissue lipolysis in response to weight loss. J Lipid Res 1999; 40: 1559 â 71.
dc.identifier.citedreferenceBucerius J, Vijgen GH, Brans B et al. Impact of bariatric surgery on carotid artery inflammation and the metabolic activity in different adipose tissues. Medicine 2015; 94: e725.
dc.identifier.citedreferenceVijgen GH, Bouvy ND, Teule GJ et al. Increase in brown adipose tissue activity after weight loss in morbidly obese subjects. J Clin Endocrinol Metab 2012; 97: E1229 â E33.
dc.identifier.citedreferenceHankir MK, Bronisch F, Hintschich C, Krugel U, Seyfried F, Fenske WK. Differential effects of Rouxâ enâ Y gastric bypass surgery on brown and beige adipose tissue thermogenesis. Metabolism 2015; 64: 1240 â 9.
dc.identifier.citedreferenceBaraboi ED, Li W, Labbe SM et al. Metabolic changes induced by the biliopancreatic diversion in dietâ induced obesity in male rats: the contributions of sleeve gastrectomy and duodenal switch. Endocrinology 2015; 156: 1316 â 29.
dc.identifier.citedreferenceLindqvist A, de la Cour CD, Hakanson R, Erlansonâ Albertsson C. Ghrelin affects gastrectomyâ induced decrease in UCP1 and beta3â AR mRNA expression in mice. Regul Pept 2007; 142: 24 â 8.
dc.identifier.citedreferenceRachid B, van de Sandeâ Lee S, Rodovalho S et al. Distinct regulation of hypothalamic and brown/beige adipose tissue activities in human obesity. Int J Obes (Lond) 2015; 39: 1515 â 22.
dc.identifier.citedreferenceLehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the discovery of biomarkers for metabolic disorders. Proteomics Clin Appl 2012; 6: 91 â 101.
dc.identifier.citedreferenceSainz N, Barrenetxe J, Morenoâ Aliaga MJ, Martinez JA. Leptin resistance and dietâ induced obesity: central and peripheral actions of leptin. Metabolism 2015; 64: 35 â 46.
dc.identifier.citedreferenceLa Cava A, Alviggi C, Matarese G. Unraveling the multiple roles of leptin in inflammation and autoimmunity. J Mol Med 2004; 82: 4 â 11.
dc.identifier.citedreferenceMohan V, Deepa R, Pradeepa R et al. Association of low adiponectin levels with the metabolic syndromeâ the Chennai Urban Rural Epidemiology Study (CURESâ 4). Metabolism 2005; 54: 476 â 81.
dc.identifier.citedreferenceMeyer LK, Ciaraldi TP, Henry RR, Wittgrove AC, Phillips SA. Adipose tissue depot and cell size dependency of adiponectin synthesis and secretion in human obesity. Adipocyte 2013; 2: 217 â 26.
dc.identifier.citedreferenceYamauchi T, Kamon J, Minokoshi Y et al. Adiponectin stimulates glucose utilization and fattyâ acid oxidation by activating AMPâ activated protein kinase. Nat Med 2002; 8: 1288 â 95.
dc.identifier.citedreferenceChang YH, Chang DM, Lin KC, Shin SJ, Lee YJ. Visfatin in overweight/obesity, type 2 diabetes mellitus, insulin resistance, metabolic syndrome and cardiovascular diseases: a metaâ analysis and systemic review. Diabetes Metab Res Rev 2011; 27: 515 â 27.
dc.identifier.citedreferenceFerland DJ, Watts SW. Chemerin: a comprehensive review elucidating the need for cardiovascular research. Pharm Res: the official journal of the Italian Pharmacological Society 2015; 99: 351 â 61.
dc.identifier.citedreferenceAbdennour M, Reggio S, Le NG et al. Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass. J Clin Endocrinol Metab 2014; 99: 898 â 907.
dc.identifier.citedreferenceLee YJ, Heo YS, Park HS, Lee SH, Lee SK, Jang YJ. Serum SPARC and matrix metalloproteinaseâ 2 and metalloproteinaseâ 9 concentrations after bariatric surgery in obese adults. Obes Surg 2014; 24: 604 â 10.
dc.identifier.citedreferenceChen J, Pamuklar Z, Spagnoli A, Torquati A. Serum leptin levels are inversely correlated with omental gene expression of adiponectin and markedly decreased after gastric bypass surgery. Surg Endosc 2012; 26: 1476 â 80.
dc.identifier.citedreferenceKim MJ, Marchand P, Henegar C et al. Fate and complex pathogenic effects of dioxins and polychlorinated biphenyls in obese subjects before and after drastic weight loss. Environ Health Perspect 2011; 119: 377 â 83.
dc.identifier.citedreferenceTschoner A, Sturm W, Engl J et al. Plasminogen activator inhibitor 1 and visceral obesity during pronounced weight loss after bariatric surgery. NutrMetab Cardiovasc Dis 2012; 22: 340 â 46.
dc.identifier.citedreferenceBobbioniâ Harsch E, Morel P, Huber O et al. Energy economy hampers body weight loss after gastric bypass. J Clin Endocrinol Metab 2000; 85: 4695 â 700.
dc.identifier.citedreferenceOberbach A, Schlichting N, Neuhaus J et al. Establishing of a reliable multiple reaction monitoringâ based method for the quantification of obesity associated comorbidities in serum and adipose tissue requires intensive clinical validation. J Proteome Res 2014; 13: 5784 â 800.
dc.identifier.citedreferenceHaluzikova D, Lacinova Z, Kavalkova P et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGFâ 19 and FGFâ 21 in morbidly obese subjects. Obesity (SilverSpring) 2013; 21: 1335 â 42.
dc.identifier.citedreferenceAuguet T, Terra X, Hernandez M et al. Clinical and adipocytokine changes after bariatric surgery in morbidly obese women. Obesity (SilverSpring) 2014; 22: 188 â 94.
dc.identifier.citedreferenceFerrer R, Pardina E, Rossell J et al. Decreased lipases and fatty acid and glycerol transporter could explain reduced fat in diabetic morbidly obese. Obesity (SilverSpring) 2014; 22: 2379 â 87.
dc.identifier.citedreferenceChen J, Spagnoli A, Torquati A. Omental gene expression of adiponectin correlates with degree of insulin sensitivity before and after gastric bypass surgery. Obes Surg 2012; 22: 472 â 77.
dc.identifier.citedreferenceSideleva O, Suratt BT, Black KE et al. Obesity and asthma: an inflammatory disease of adipose tissue not the airway. Am J Respir Crit Care Med 2012; 186: 598 â 605.
dc.identifier.citedreferenceSavu MK, Phillips SA, Oh DK et al. Response of adiponectin and its receptors to changes in metabolic state after gastric bypass surgery: dissociation between adipose tissue expression and circulating levels. Surg Obes Relat Dis 2009; 5: 172 â 80.
dc.identifier.citedreferenceCawthorn WP, Scheller EL, Learman BS et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab 2014; 20: 368 â 75.
dc.identifier.citedreferenceCoughlin CC, Finck BN, Eagon JC et al. Effect of marked weight loss on adiponectin gene expression and plasma concentrations. Obesity (SilverSpring) 2007; 15: 640 â 45.
dc.identifier.citedreferenceTerra X, Auguet T, Quesada I et al. Increased levels and adipose tissue expression of visfatin in morbidly obese women: the relationship with proâ inflammatory cytokines. Clin Endocrinol(Oxf) 2012; 77: 691 â 98.
dc.identifier.citedreferenceShrestha C, He H, Liu Y, Zhu S, Xiong J, Mo Z. Changes in adipokines following laparoscopic Rouxâ enâ Y gastric bypass surgery in Chinese individuals with type 2 diabetes mellitus and BMI of 22â 30â kg.m(â 2.) Int J Endocrinol 2013; 2013: 240971.
dc.identifier.citedreferenceTerra X, Auguet T, Guiuâ Jurado E et al. Longâ term changes in leptin, chemerin and ghrelin levels following different bariatric surgery procedures: Rouxâ enâ Y gastric bypass and sleeve gastrectomy. Obes Surg 2013; 23: 1790 â 8.
dc.identifier.citedreferenceSell H, Divoux A, Poitou C et al. Chemerin correlates with markers for fatty liver in morbidly obese patients and strongly decreases after weight loss induced by bariatric surgery. J Clin Endocrinol Metab 2010; 95: 2892 â 6.
dc.identifier.citedreferenceRess C, Tschoner A, Engl J et al. Effect of bariatric surgery on circulating chemerin levels. Eur J Clin Invest 2010; 40: 277 â 80.
dc.identifier.citedreferenceParlee SD, Wang Y, Poirier P et al. Biliopancreatic diversion with duodenal switch modifies plasma chemerin in early and late postâ operative periods. Obesity 2015; 23: 1201 â 8.
dc.identifier.citedreferenceGrant R, Youm YH, Ravussin A, Dixit VD. Quantification of adipose tissue leukocytosis in obesity. Methods Mol Biol 2013; 1040: 195 â 209.
dc.identifier.citedreferenceXu H, Barnes GT, Yang Q et al. Chronic inflammation in fat plays a crucial role in the development of obesityâ related insulin resistance. J Clin Invest 2003; 112: 1821 â 30.
dc.identifier.citedreferenceSkurk T, Albertiâ Huber C, Herder C, Hauner H. Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab 2007; 92: 1023 â 33.
dc.identifier.citedreferenceSuganami T, Mieda T, Itoh M, Shimoda Y, Kamei Y, Ogawa Y. Attenuation of obesityâ induced adipose tissue inflammation in C3H/HeJ mice carrying a Tollâ like receptor 4 mutation. Biochem Biophys Res Commun 2007; 354: 45 â 9.
dc.identifier.citedreferenceViana EC, Araujoâ Dasilio KL, Miguel GP et al. Gastric bypass and sleeve gastrectomy: the same impact on ILâ 6 and TNFâ alpha. Prospective clinical trial. Obes Surg 2013; 23: 1252 â 61.
dc.identifier.citedreferenceKardassis D, Schonander M, Sjostrom L, Karason K. Carotid artery remodelling in relation to body fat distribution, inflammation and sustained weight loss in obesity. J Intern Med 2014; 275: 534 â 43.
dc.identifier.citedreferenceCatalan V, Gomezâ Ambrosi J, Ramirez B et al. Proinflammatory cytokines in obesity: impact of type 2 diabetes mellitus and gastric bypass. Obes Surg 2007; 17: 1464 â 74.
dc.identifier.citedreferenceAppachi S, Kelly KR, Schauer PR et al. Reduced cardiovascular risk following bariatric surgeries is related to a partial recovery from â adiposopathyâ . Obes Surg 2011; 21: 1928 â 36.
dc.identifier.citedreferenceGregor MF, Yang L, Fabbrini E et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 2009; 58: 693 â 700.
dc.identifier.citedreferenceToubal A, Clement K, Fan R et al. SMRTâ GPS2 corepressor pathway dysregulation coincides with obesityâ linked adipocyte inflammation. J Clin Invest 2013; 123: 362 â 79.
dc.identifier.citedreferenceEissing L, Scherer T, Todter K et al. De novo lipogenesis in human fat and liver is linked to ChREBPâ beta and metabolic health. Nat Commun 2013; 4: 1528.
dc.identifier.citedreferenceIannelli A, Anty R, Schneck AS, Tran A, Hebuterne X, Gugenheim J. Evolution of lowâ grade systemic inflammation, insulin resistance, anthropometrics, resting energy expenditure and metabolic syndrome after bariatric surgery: a comparative study between gastric bypass and sleeve gastrectomy. J Visc Surg 2013; 150: 269 â 75.
dc.identifier.citedreferencePoitou C, Dalmas E, Renovato M et al. CD14dimCD16+ and CD14+ CD16+ monocytes in obesity and during weight loss: relationships with fat mass and subclinical atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31: 2322 â 30.
dc.identifier.citedreferenceCancello R, Henegar C, Viguerie N et al. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgeryâ induced weight loss. Diabetes 2005; 54: 2277 â 86.
dc.identifier.citedreferenceAronâ Wisnewsky J, Tordjman J, Poitou C et al. Human adipose tissue macrophages: m1 and m2 cell surface markers in subcutaneous and omental depots and after weight loss. J Clin Endocrinol Metab 2009; 94: 4619 â 23.
dc.identifier.citedreferencePoitou C, Perret C, Mathieu F et al. Bariatric surgery induces disruption in inflammatory signaling pathways mediated by immune cells in adipose tissue: a RNAâ Seq study. PLoS One 2015; 10 e0125718.
dc.identifier.citedreferenceWynn TA. Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Invest 2007; 117: 524 â 9.
dc.identifier.citedreferenceVila IK, Badin PM, Marques MA et al. Immune cell Tollâ like receptor 4 mediates the development of obesityâ and endotoxemiaâ associated adipose tissue fibrosis. Cell Rep 2014; 7: 1116 â 29.
dc.identifier.citedreferenceDivoux A, Tordjman J, Lacasa D et al. Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss. Diabetes 2010; 59: 2817 â 25.
dc.identifier.citedreferenceHu C, Zhang G, Sun D, Han H, Hu S. Duodenalâ jejunal bypass improves glucose metabolism and adipokine expression independently of weight loss in a diabetic rat model. Obes Surg 2013; 23: 1436 â 44.
dc.identifier.citedreferenceLancha A, Moncada R, Valenti V et al. Effect of sleeve gastrectomy on osteopontin circulating levels and expression in adipose tissue and liver in rats. Obes Surg 2014; 24: 1702 â 08.
dc.identifier.citedreferenceStefater MA, Sandoval DA, Chambers AP et al. Sleeve gastrectomy in rats improves postprandial lipid clearance by reducing intestinal triglyceride secretion. Gastroenterology 2011; 141: 939 â 49.
dc.identifier.citedreferenceMyronovych A, Kirby M, Ryan KK et al. Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weightâ lossâ independent manner. Obesity 2014; 22: 390 â 400.
dc.identifier.citedreferenceHe B, Liu L, Yu C, Wang Y, Han P. Rouxâ enâ Y gastric bypass reduces lipid overaccumulation in liver by upregulating hepatic autophagy in obese diabetic rats. Obes Surg 2014; 25: 109 â 18.
dc.identifier.citedreferenceDe Giorgi S, Campos V, Egli L et al. Longâ term effects of Rouxâ enâ Y gastric bypass on postprandial plasma lipid and bile acids kinetics in female non diabetic subjects: a crossâ sectional pilot study. Clin Nutr 2014; 34: 911 â 7.
dc.identifier.citedreferenceKohli R, Myronovych A, Tan BK et al. Bile acid signaling: mechanism for bariatric surgery, cure for NASH? Dig Dis 2015; 33: 440 â 6.
dc.identifier.citedreferenceGadaleta RM, Cariello M, Sabba C, Moschetta A. Tissueâ specific actions of FXR in metabolism and cancer. Biochim Biophys Acta 1851; 2015: 30 â 9.
dc.identifier.citedreferenceTeodoro JS, Rolo AP, Palmeira CM. Hepatic FXR: key regulator of wholeâ body energy metabolism. Trends in endocrinology and metabolism: TEM 2011; 22: 458 â 66.
dc.identifier.citedreferenceRyan KK, Tremaroli V, Clemmensen C et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature 2014; 509: 183 â 8.
dc.identifier.citedreferenceMcGavigan AK, Garibay D, Henseler ZM et al. TGR5 contributes to glucoregulatory improvements after vertical sleeve gastrectomy in mice. Gut 2015. doi: 10.1136/gutjnlâ 2015â 309871.
dc.identifier.citedreferenceSharma NK, Das SK, Mondal AK et al. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab 2008; 93: 4532 â 41.
dc.identifier.citedreferenceChang YC, Hee SW, Hsieh ML, Jeng YM, Chuang LM. The role of organelle stresses in diabetes mellitus and obesity: implication for treatment. Anal Cell Pathol 2015; 2015: 972891.
dc.identifier.citedreferenceLips MA, de Groot GH, Berends FJ et al. Calorie restriction and Rouxâ enâ Y gastric bypass have opposing effects on circulating FGF21 in morbidly obese subjects. Clin Endocrinol (Oxf) 2014; 81: 862 â 70.
dc.identifier.citedreferenceJansen PL, van Aarts WJE et al. Alterations of hormonally active fibroblast growth factors after Rouxâ enâ Y gastric bypass surgery. Dig Dis 2011; 29: 48 â 51.
dc.identifier.citedreferenceAdams AC, Kharitonenkov A. FGF21: the center of a transcriptional nexus in metabolic regulation. Curr Diabetes Rev 2012; 8: 285 â 93.
dc.identifier.citedreferenceJahansouz C, Xu H, Hertzel AV et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg 2015. doi: 10.1097/SLA.0000000000001552.
dc.identifier.citedreferenceRoesch SL, Styer AM, Wood GC et al. Perturbations of fibroblast growth factors 19 and 21 in type 2 diabetes. PLoS One 2015; 10 e0116928.
dc.identifier.citedreferenceFerrante AW Jr. Macrophages, fat, and the emergence of immunometabolism. J Clin Invest 2013; 123: 4992 â 3.
dc.identifier.citedreferenceMagalhaes I, Pingris K, Poitou C et al. Mucosalâ associated invariant T cell alterations in obese and type 2 diabetic patients. J Clin Invest 2015; 125: 1752 â 62.
dc.identifier.citedreferenceMagalhaes I, Kiaf B, Lehuen A. iNKT and MAIT cell alterations in diabetes. Front Immunol 2015; 6: 341.
dc.identifier.citedreferenceSchipper HS, Rakhshandehroo M, van de Graaf SF et al. Natural killer T cells in adipose tissue prevent insulin resistance. J Clin Invest 2012; 122: 3343 â 54.
dc.identifier.citedreferenceCantu RC, Goodman HM. Effects of denervation and fasting on white adipose tissue. Am J Physiol 1967; 212: 207 â 12.
dc.identifier.citedreferenceYoungstrom TG, Bartness TJ. White adipose tissue sympathetic nervous system denervation increases fat pad mass and fat cell number. Am J Physiol 1998; 275: R1488 â 93.
dc.identifier.citedreferenceShi H, Bartness TJ. White adipose tissue sensory nerve denervation mimics lipectomyâ induced compensatory increases in adiposity. Am J Physiol Regul Integr Comp Physiol 2005; 289: R514 â R20.
dc.identifier.citedreferenceWu J, Bostrom P, Sparks LM et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150: 366 â 76.
dc.identifier.citedreferenceSeale P, Conroe HM, Estall J et al. Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 2011; 121: 96 â 105.
dc.identifier.citedreferenceHarms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med 2013; 19: 1252 â 63.
dc.identifier.citedreferenceUmemura A, Sasaki A, Nitta H, Otsuka K, Suto T, Wakabayashi G. Effects of changes in adipocyte hormones and visceral adipose tissue and the reduction of obesityâ related comorbidities after laparoscopic sleeve gastrectomy in Japanese patients with severe obesity. Endocr J 2014; 61: 381 â 91.
dc.identifier.citedreferencePardina E, Baenaâ Fustegueras JA, Catalan R et al. Increased expression and activity of hepatic lipase in the liver of morbidly obese adult patients in relation to lipid content. Obes Surg 2009; 19: 894 â 904.
dc.identifier.citedreferenceTorriani M, Oliveira AL, Azevedo DC, Bredella MA, Yu EW. Effects of Rouxâ enâ Y gastric bypass surgery on visceral and subcutaneous fat density by computed tomography. Obes Surg 2015; 25: 381 â 5.
dc.identifier.citedreferencePardina E, Baenaâ Fustegueras JA, Fort JM et al. Hepatic and visceral adipose tissue 11betaHSD1 expressions are markers of body weight loss after bariatric surgery. Obesity 2015; 23: 1856 â 63.
dc.identifier.citedreferenceDadson P, Landini L, Helmio M et al. Effect of bariatric surgery on adipose tissue glucose metabolism in different depots in patients with or without type 2 diabetes. Diabetes Care 2016; 39: 292 â 9.
dc.identifier.citedreferenceBazzocchi A, Ponti F, Cariani S et al. Visceral Fat and body composition changes in a female population after RYGBP: a twoâ year followâ up by DXA. Obes Surg 2014.
dc.identifier.citedreferenceHansen M, Lund MT, Gregers E et al. Adipose tissue mitochondrial respiration and lipolysis before and after a weight loss by diet and RYGB. Obesity 2015; 23: 2022 â 9.
dc.identifier.citedreferenceKashyap SR, Bhatt DL, Wolski K et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care 2013; 36: 2175 â 82.
dc.identifier.citedreferenceCatalan V, Gomezâ Ambrosi J, Rodriguez A et al. Increased levels of chemerin and its receptor, chemokineâ like receptorâ 1, in obesity are related to inflammation: tumor necrosis factorâ alpha stimulates mRNA levels of chemerin in visceral adipocytes from obese patients. Surg Obes Relat Dis: official journal of the American Society for Bariatric Surgery 2013; 9: 306 â 14.
dc.identifier.citedreferencePatti ME, Houten SM, Bianco AC et al. Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (SilverSpring) 2009; 17: 1671 â 77.
dc.identifier.citedreferenceDomienikâ Karlowicz J, Rymarczyk Z, Dzikowskaâ Diduch O et al. Emerging markers of atherosclerosis before and after bariatric surgery. Obes Surg 2015; 25: 486 â 93.
dc.identifier.citedreferenceNetto BD, Bettini SC, Clemente AP et al. Rouxâ enâ Y gastric bypass decreases proâ inflammatory and thrombotic biomarkers in individuals with extreme obesity. Obes Surg 2015; 25: 1010 â 8.
dc.identifier.citedreferenceLindegaard KK, Jorgensen NB, Just R, Heegaard PM, Madsbad S. Effects of Rouxâ enâ Y gastric bypass on fasting and postprandial inflammationâ related parameters in obese subjects with normal glucose tolerance and in obese subjects with type 2 diabetes. Diabetol Metab Syndr 2015; 7: 12.
dc.identifier.citedreferenceXu XJ, Apovian C, Hess D, Carmine B, Saha A, Ruderman N. Improved insulin sensitivity 3 months after RYGB surgery is associated with increased subcutaneous adipose tissue AMPK activity and decreased oxidative stress. Diabetes 2015; 64: 3155 â 9.
dc.identifier.citedreferenceKelly AS, Ryder JR, Marlatt KL, Rudser KD, Jenkins T, Inge TH. Changes in inflammation, oxidative stress and adipokines following bariatric surgery among adolescents with severe obesity. Int J Obes (Lond) 2015; 40: 275 â 80.
dc.identifier.citedreferenceUrbanova M, Dostalova I, Trachta P et al. Serum concentrations and subcutaneous adipose tissue mRNA expression of omentin in morbid obesity and type 2 diabetes mellitus: the effect of veryâ lowâ calorie diet, physical activity and laparoscopic sleeve gastrectomy. Physiol Res 2014; 63: 207 â 18.
dc.identifier.citedreferenceBruna M, Gumbau V, Guaita M et al. Prospective study of glucoâ lipidic hormone and peptide levels in morbidly obese patients after sleeve gastrectomy. Cir Esp 2014; 92: 175 â 81.
dc.identifier.citedreferenceTrachta P, Dostalova I, Haluzikova D et al. Laparoscopic sleeve gastrectomy ameliorates mRNA expression of inflammationâ related genes in subcutaneous adipose tissue but not in peripheral monocytes of obese patients. Mol Cell Endocrinol 2014; 383: 96 â 102.
dc.identifier.citedreferenceCosta Justus JF, Ligocki Campos AC, Figueroa AL et al. Early effect of bariatric surgery on the circadian rhythms of adipokines in morbidly obese women. Metab Syndr Relat Disord 2016; 14: 16 â 22.
dc.identifier.citedreferenceMontecucco F, Lenglet S, Quercioli A et al. Gastric bypass in morbid obese patients is associated with reduction in adipose tissue inflammation via Nâ oleoylethanolamide (OEA)â mediated pathways. Thromb Haemost 2015; 113: 838 â 50.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.