Show simple item record

Evidence of rapid transfer and bioaccumulation of Microcystinâ LR poses potential risk to freshwater prawn Macrobrachium rosenbergii (de Man)

dc.contributor.authorLiu, Li‐ping
dc.contributor.authorSu, Xiao‐ming
dc.contributor.authorChen, Tao‐ying
dc.contributor.authorLi, Kang
dc.contributor.authorZhan, Jia
dc.contributor.authorEgna, Hillary
dc.contributor.authorDiana, James
dc.date.accessioned2016-10-17T21:20:01Z
dc.date.available2017-12-01T21:54:12Zen
dc.date.issued2016-10
dc.identifier.citationLiu, Li‐ping ; Su, Xiao‐ming ; Chen, Tao‐ying ; Li, Kang; Zhan, Jia; Egna, Hillary; Diana, James (2016). "Evidence of rapid transfer and bioaccumulation of Microcystinâ LR poses potential risk to freshwater prawn Macrobrachium rosenbergii (de Man)." Aquaculture Research 47(10): 3088-3097.
dc.identifier.issn1355-557X
dc.identifier.issn1365-2109
dc.identifier.urihttps://hdl.handle.net/2027.42/134252
dc.description.abstractMicrocystins accumulate in aquatic organisms and can be transferred to higher trophic levels, eventually affecting vector animals and consumers. We examined three levels of an aquatic food chain (Microcystis aeruginosa, Daphnia magna and Macrobrachium rosenbergii) to identify the transfer efficiency and risk of microcystin on prawns. Samples were analysed using ultra performance liquid chromatographyâ mass spectrometry (MS)/MS and microcystinâ LR (MCâ LR) distributions in prawn tissues were studied. The results showed that prawns accumulate MCâ LR both directly from M. aeruginosa and indirectly through D. magna which was preâ exposed to M. aeruginosa. MCâ LR was detected in the gills, digestive tracts and hepatopancreas of the prawns 2 h after exposure. MCâ LR accumulated in prawns to 0.49 ± 0.04 μg gâ 1 dry weight in hepatopancreas within 24 h, while it was not detected in muscle samples, and rarely appeared in blood samples in such a short period. Although MCâ LR was not detected in muscle, the head including hepatopancreas of the prawns accumulated troublesome amounts of MCâ LR. These results demonstrate that microcystis blooms in prawn farming potentially pose a risk to human consumers, although prawns may be exposed to the bloom for a very short time, hence regular monitoring of blue green algae population is recommended.
dc.publisherE & FN Spon
dc.publisherWiley Periodicals, Inc.
dc.subject.otherMicrocystinâ LR
dc.subject.otherfood safety
dc.subject.otherMacrobrachium rosenbergii
dc.subject.otherbioaccumulation
dc.titleEvidence of rapid transfer and bioaccumulation of Microcystinâ LR poses potential risk to freshwater prawn Macrobrachium rosenbergii (de Man)
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAtmospheric, Oceanic and Space Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134252/1/are12759.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134252/2/are12759_am.pdf
dc.identifier.doi10.1111/are.12759
dc.identifier.sourceAquaculture Research
dc.identifier.citedreferenceOzawa K., Yokoyama A., Ishikawa K., Kumagai M., Watanabe M.F. & Park H.D. ( 2003 ) Accumulation and depurationof microcystin produced by the cyanobacterium Microcystisin a freshwater snail. Limnology 4, 131 â 138.
dc.identifier.citedreferenceDeblois C.P., Gianib A. & Bird D.F. ( 2011 ) Experimental model of microcystin accumulation in the liver of Oreochromis niloticus exposed subchronically to a toxic bloom of Microcystis sp. Aquatic Toxicology 103, 63 â 70.
dc.identifier.citedreferenceDietrich D.R. & Hoeger S.J. ( 2005 ) Guidance values for microcystin in water and cyanobacterial supplement products (blueâ green algae supplements): a reasonable or misguided approach? Toxicology and Applied Pharmacology 203, 273 â 289.
dc.identifier.citedreferenceEngströmâ à st J., Lehtiniemi M., Green S., Kozlowskyâ Suzuki B. & Viitasalo M. ( 2002 ) Does cyanobacterial toxin accumulate in mysid shrimps and fish via copepods? Journal of Experimental Marine Biology and Ecology 276, 95 â 107.
dc.identifier.citedreferenceFischer W.J. & Dietrich D.R. ( 2000 ) Pathological and biochemical characterization of microcystinâ induced hepatopancreas and kidney damage in carp ( Cyprinus carpio ). Toxicology and Applied Pharmacology 1, 73 â 81.
dc.identifier.citedreferenceIbelings B.W. & Chorus I. ( 2007 ) Accumulation of cyanobacterial toxins in freshwater â seafoodâ and its consequences for public health: a review. Environmental Pollution 150, 177 â 192.
dc.identifier.citedreferenceIbelings B.W., Bruning K., de Jonge J., Wolfstein K., Pires L.M.D., Postma J. & Burger T. ( 2005 ) Distribution of microcystins in a lake foodweb: no evidence for biomagnification. Microbial Ecology 49, 487 â 500.
dc.identifier.citedreferenceKankaanpää H.T., Holliday J., Schroder H., Goddard T.J., von Fister R. & Carmichael W.W. ( 2005 ) Cyanobacteria and prawn farming in northern New South Wales, Australiaâ a case study on cyanobacteria diversity and hepatotoxin bioaccumulation. Toxicology and Applied Pharmacology 203, 243 â 256.
dc.identifier.citedreferenceKarjalainen M., Reinikainen M., Spoof L., Meriluoto J.A.O. & Sivonen K. ( 2005 ) Trophic transfer of cyanobacterial toxins from zooplankton to planktivores: consequences for pike larvae and mysid shrimps. Environmental Toxicology 20, 354 â 362.
dc.identifier.citedreferenceKuiperâ Goodman T., Falconer I. & Fitzerald J. ( 1999 ) Human health aspects. In: Toxic Cyanobacteria in Water: A Guide to their Public Health Consequences, Monitoring and Management (ed. by I. Chorus & J. Bartman ), pp. 126 â 134. Taylor & Francis, London, UK.
dc.identifier.citedreferenceLance E., Brient L., Bormans M. & Gérard C. ( 2006 ) Interactions between cyanobacteria and Gastropods I. Ingestion of toxic Planktothrix agardhii by Lymnaea stagnalis and the kinetics of microcystin bioaccumulation and detoxification. Aquatic Toxicology 79, 140 â 148.
dc.identifier.citedreferenceLiu L.P., Li K., Chen T.Y., Dai X.L., Jiang M. & Diana J.S. ( 2011 ) Effects of Microcystis aeruginosa on the life history of water flea Daphnia magna. Chinese Journal of Oceanology and Limnology 29, 892 â 897.
dc.identifier.citedreferenceLiu W., Qiao Q., Chen Y., Wu K. & Zhang X. ( 2014 ) Microcystinâ LR exposure to adult zebrafish ( Danio rerio ) leads to growth inhibition and immune dysfunction in F1 offspring, a parentaltransmission effect of toxicity. Aquatic Toxicology 155, 360 â 367.
dc.identifier.citedreferenceMohamed Z.A., Carmichael W.W. & Hussein A.A. ( 2003 ) Estimationof microcystins in the freshwater fish Oreochromis niloticus in an Egyptian fish farm containing a Microcystis bloom. Environmental Toxicology 18, 137 â 141.
dc.identifier.citedreferenceOrtizâ Rodríguez R. & Wiegand C. ( 2010 ) Age related acute effects of microcystinâ LR on Daphnia magna biotransformation and oxidative stress. Toxicon 56, 1342 â 1349.
dc.identifier.citedreferenceSmith J.L. & Haney J.F. ( 2006 ) Foodweb transfer, accumulation, and depuration of microcystins, a cyanobacterial toxin, in pumpkinseed sunfish ( Lepomis gibbosus ). Toxicon 48, 580 â 589.
dc.identifier.citedreferenceSmith J.L., Boyer G.L. & Zimba P.V. ( 2008 ) A review of cyanobacterial odorous and bioactive metabolites: impacts and management alternatives in aquaculture. Aquaculture 280, 5 â 20.
dc.identifier.citedreferenceVareli K., Zarali E., Zacharioudakis G.S.A., Vagenas G., Varelis V., Pilidis G., Briasoulis E. & Sainis I. ( 2012 ) Microcystin producing cyanobacterial communities in Amvrakikos Gulf (Mediterranean Sea, NW Greece) and toxin accumulation in mussels ( Mytilus galloprovincialis ). Harmful Algae 15, 109 â 118.
dc.identifier.citedreferenceVasconcelos V.M., Oliveira S. & Teles F.O. ( 2001 ) Impact of a toxicand a nonâ toxic strain of Microcystis aeruginosa on the crayfish Procambarus clarkia. Toxicon 39, 1461 â 1470.
dc.identifier.citedreferenceWilson A.E., Gossiaux D.C., Hook T.O., Berry J.P., Landrum P.F., Dyble J. & Guildford S.J. ( 2008 ) Evaluation of the human health threat associated with the hepatotoxin microcystin in the muscle and liver tissues of yellow perch ( Perca flavescens ). Canadian Journal of Fisheries and Aquatic Sciences 65, 1487 â 1497.
dc.identifier.citedreferenceXie L., Xie P., Guo L.G., Li L., Miyabara Y. & Park H. ( 2005 ) Organ distribution and bioaccumulation of microcystins in freshwater fishes with different trophic levels from the eutrophic Lake Chaohu, China. Environmental Toxicology 20, 292 â 300.
dc.identifier.citedreferenceXie L., Yokoyama A., Nakamura K. & Park H. ( 2007 ) Accumulation of microcystins in various organs of the freshwater snail Sinotaia histrica and three fishes in a temperate lake, the eutrophic LakeSuwa, Japan. Toxicon 49, 646 â 652.
dc.identifier.citedreferenceZhang D., Xie P., Chen J., Dai M., Qiu T., Liu Y. & Liang G. ( 2009 ) Determination of microcystinâ LR and its metabolites in snail ( Bellamya aeruginosa ), shrimp ( Macrobrachium nipponensis ) and silver carp ( Hypophthalmichthys molitrix ) from Lake Taihu, China. Chemosphere 76, 974 â 981.
dc.identifier.citedreferenceZiková A., Lorenz C., Lutz I., Pflugmacher S. & Kloas W. ( 2013 ) Physiological responses of Xenopus laevis  tadpoles exposed to cyanobacterial biomass containing microcystinâ LR. Aquatic Toxicology 128â 129, 25 â 33.
dc.identifier.citedreferenceZimba P.V., Camus A., Allen E.H. & Burkholder J.M. ( 2006 ) Coâ occurrence of white shrimp, Litopenaeus vannamei, mortalities and microcystin toxin in a southeastern USA shrimp facility. Aquaculture 261, 1048 â 1055.
dc.identifier.citedreferenceAndersen R.J., Luu H.A., Chen D.Z.X., Holmes C.F.B., Kent M.L., Le Blanc M., Taylor F.J.R. & Williams D.E. ( 1993 ) Chemical and biological evidence links microcystins to salmon â netpen liver diseaseâ . Toxicon 31, 1315 â 1323.
dc.identifier.citedreferenceBeaver J.R., Manis E.E., Loftin K.A., Graham J.L., Pollard A.I. & Mitchell R.M. ( 2014 ) Land use patterns, ecoregion, and microcystin relationships in U.S. lakes and reservoirs: a preliminary evaluation. Harmful Algae 36, 57 â 62.
dc.identifier.citedreferenceCazenave J., Wunderlin D.A., Bistoni M., Améd L.A., Krause M.V., Pflugmacher E. & Wiegand S.C. ( 2005 ) Uptake, tissue distribution and accumulation of microcystinâ RR in Corydoras paleatus, Jenynsia multidentata and Odontesthes bonariensis. A field and laboratory study. Aquatic Toxicology 75, 178 â 190.
dc.identifier.citedreferenceChen J. & Xie P. ( 2005 ) Tissue distributions and seasonal dynamics of the hepatotoxic microcystinsâ LR and â RR in two freshwater shrimps, Palaemon modestus and Macrobrachium nipponensis, from a large shallow, eutrophic lake of the subtropical China. Toxicon 45, 615 â 625.
dc.identifier.citedreferenceChen J., Xie P., Zhang D., Ke Z. & Yang H. ( 2006 ) In situ studies on the bioaccumulation of microcystins in the phytoplanktivorous silver carp ( Hypophthalmichthys molitrix ) stocked in Lake Taihu with dense toxic Microcystis blooms. Aquaculture 261, 1026 â 1038.
dc.identifier.citedreferenceChen J., Zhang D., Xie P., Wang Q. & Ma Z. ( 2009 ) Simultaneous determination of microcystin contaminations in various vertebrates (fish, turtle, duck and water bird) from a large eutrophic Chinese lake, Lake Taihu, with toxic Microcystis blooms. Science of the Total Environment 407, 3317 â 3322.
dc.identifier.citedreferenceChen J., Xie P., Li L. & Xu J. ( 2009 ) First identification of the hepatotoxic microcystins in the serum of a chronically exposed human population together with indication of hepatocellular damage. Toxicological Sciences 108, 81 â 89.
dc.identifier.citedreferenceChorus I. & Bartram J. ( 1999 ) Toxic Cyanobacteria in Waterâ a Guide to Public Health Consequences, Monitoring and Management. E & FN Spon, London, 416 pp. Published on behalf of World Health Organization.
dc.identifier.citedreferenceCodd G.A., Lindsay J., Young F.M., Morrison L.F. & Metcalf J.S. ( 2005 ) From mass mortalities to management measures. In: Harmful Cyanobacteria. Aquatic Ecology Series (ed. by J. Huisman, H.C.P. Matthijs & P.M. Visser ), pp. 1 â 23. Springerâ Verlag New York Inc., New York, USA.
dc.identifier.citedreferenceCodd G.A., Morrison L.F. & Metcalf J.S. ( 2005 ) Cyanobacterial toxins: risk management for health protection. Toxicology and Applied Pharmacology 203, 264 â 272.
dc.identifier.citedreferenceDeblois C.P., Arandaâ Rodriguez R., Giani A. & Bird D.F. ( 2008 ) Microcystin accumulationin liver and muscle of tilapia in two large Brazilian hydroelectric reservoirs. Toxicon 51, 435 â 448.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.