Show simple item record

Steepening of waves at the duskside magnetopause

dc.contributor.authorPlaschke, F.
dc.contributor.authorKahr, N.
dc.contributor.authorFischer, D.
dc.contributor.authorNakamura, R.
dc.contributor.authorBaumjohann, W.
dc.contributor.authorMagnes, W.
dc.contributor.authorBurch, J. L.
dc.contributor.authorTorbert, R. B.
dc.contributor.authorRussell, C. T.
dc.contributor.authorGiles, B. L.
dc.contributor.authorStrangeway, R. J.
dc.contributor.authorLeinweber, H. K.
dc.contributor.authorBromund, K. R.
dc.contributor.authorAnderson, B. J.
dc.contributor.authorLe, G.
dc.contributor.authorChutter, M.
dc.contributor.authorSlavin, J. A.
dc.contributor.authorKepko, E. L.
dc.date.accessioned2016-10-17T21:20:02Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07-28
dc.identifier.citationPlaschke, F.; Kahr, N.; Fischer, D.; Nakamura, R.; Baumjohann, W.; Magnes, W.; Burch, J. L.; Torbert, R. B.; Russell, C. T.; Giles, B. L.; Strangeway, R. J.; Leinweber, H. K.; Bromund, K. R.; Anderson, B. J.; Le, G.; Chutter, M.; Slavin, J. A.; Kepko, E. L. (2016). "Steepening of waves at the duskside magnetopause." Geophysical Research Letters 43(14): 7373-7380.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/134254
dc.description.abstractSurface waves at the magnetopause flanks typically feature steeper, i.e., more inclined leading (antisunward facing) than trailing (sunward facing) edges. This is expected for Kelvin‐Helmholtz instability (KHI) amplified waves. Very rarely, during northward interplanetary magnetic field (IMF) conditions, anomalous/inverse steepening has been observed. The small‐scale tetrahedral configuration of the Magnetospheric Multiscale spacecraft and their high time resolution measurements enable us to routinely ascertain magnetopause boundary inclinations during surface wave passage with high accuracy by four‐spacecraft timing analysis. At the dusk flank magnetopause, 77%/23% of the analyzed wave intervals exhibit regular/inverse steepening. Inverse steepening happens during northward IMF conditions, as previously reported and, in addition, during intervals of dominant equatorial IMF. Inverse steepening observed under the latter conditions may be due to the absence of KHI or due to instabilities arising from the alignment of flow and magnetic fields in the magnetosheath.Key PointsThe MMS spacecraft configuration, orbits, and data resolution enable us to ascertain magnetopause (wave) inclinations with high accuracyInverse wave steepening (steeper trailing edges) occurs also when the IMF is in the GSM x‐y plane, not only during mainly northward IMFInverse steepening may be associated to the absence of KHI or to instabilities from the alignment of flow and magnetic fields in the sheath
dc.publisherJohn Wiley
dc.subject.otherMagnetospheric Multiscale
dc.subject.othermagnetopause
dc.subject.othersurface wave
dc.subject.othersteepening
dc.subject.otherKelvin‐Helmholtz instability
dc.subject.otherplasma depletion layer
dc.titleSteepening of waves at the duskside magnetopause
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134254/1/grl54723.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134254/2/grl54723_am.pdf
dc.identifier.doi10.1002/2016GL070003
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceNykyri, K. ( 2013 ), Impact of MHD shock physics on magnetosheath asymmetry and Kelvin‐Helmholtz instability, J. Geophys. Res. Space Physics, 118, 5068 – 5081, doi: 10.1002/jgra.50499.
dc.identifier.citedreferenceAngelopoulos, V. ( 2008 ), The THEMIS Mission, Space Sci. Rev., 141, 5 – 34, doi: 10.1007/s11214‐008‐9336‐1.
dc.identifier.citedreferenceBurch, J. L., T. E. Moore, R. B. Torbert, and B. L. Giles ( 2016 ), Magnetospheric Multiscale overview and science objectives, Space Sci. Rev., 199 ( 1 ), 5 – 21, doi: 10.1007/s11214‐015‐0164‐9.
dc.identifier.citedreferenceCahill, L. J., and P. G. Amazeen ( 1963 ), The boundary of the geomagnetic field, J. Geophys. Res., 68, 1835 – 1843, doi: 10.1029/JZ068i007p01835.
dc.identifier.citedreferenceChapman, S., and V. C. A. Ferraro ( 1930 ), A new theory of magnetic storms, Nature, 126, 129 – 130, doi: 10.1038/126129a0.
dc.identifier.citedreferenceChen, S.‐H., and M. G. Kivelson ( 1993 ), On nonsinusoidal waves at the Earth’s magnetopause, Geophys. Res. Lett., 20, 2699 – 2702, doi: 10.1029/93GL02622.
dc.identifier.citedreferenceChen, S.‐H., M. G. Kivelson, J. T. Gosling, R. J. Walker, and A. J. Lazarus ( 1993 ), Anomalous aspects of magnetosheath flow and of the shape and oscillations of the magnetopause during an interval of strongly northward interplanetary magnetic field, J. Geophys. Res., 98, 5727 – 5742, doi: 10.1029/92JA02263.
dc.identifier.citedreferenceFairfield, D. H., A. Otto, T. Mukai, S. Kokubun, R. P. Lepping, J. T. Steinberg, A. J. Lazarus, and T. Yamamoto ( 2000 ), Geotail observations of the Kelvin‐Helmholtz instability at the equatorial magnetotail boundary for parallel northward fields, J. Geophys. Res., 105 ( A9 ), 21,159 – 21,173, doi: 10.1029/1999JA000316.
dc.identifier.citedreferenceFarrugia, C. J., F. T. Gratton, and R. B. Torbert ( 2001 ), Viscous‐type processes in the solar wind‐magnetosphere interaction, Space Sci. Rev., 95, 443 – 456.
dc.identifier.citedreferenceFarrugia, C. J., F. T. Gratton, G. Gnavi, R. B. Torbert, and L. B. Wilson ( 2014 ), A vortical dawn flank boundary layer for near‐radial IMF: Wind observations on 24 October 2001, J. Geophys. Res. Space Physics, 119, 4572 – 4590, doi: 10.1002/2013JA019578.
dc.identifier.citedreferenceFischer, D., et al. ( 2016 ), Optimized merging of search coil and fluxgate data for MMS, Geosci. Instrum. Methods Data Syst. Discuss., 2016, 1 – 21, doi: 10.5194/gi‐2016‐11.
dc.identifier.citedreferenceFoullon, C., C. J. Farrugia, A. N. Fazakerley, C. J. Owen, F. T. Gratton, and R. B. Torbert ( 2008 ), Evolution of Kelvin‐Helmholtz activity on the dusk flank magnetopause, J. Geophys. Res., 113, A11203, doi: 10.1029/2008JA013175.
dc.identifier.citedreferenceGratton, F. T., G. Gnavi, C. J. Farrugia, L. Bilbao, and R. Torbert ( 2012 ), Velocity shear instability and plasma billows at the Earth’s magnetic boundary, J. Phys. Conf. Ser., 370 ( 1 ), 012003, doi: 10.1088/1742‐6596/370/1/012003.
dc.identifier.citedreferenceHarvey, C. C. ( 1998 ), Spatial gradients and the volumetric tensor, ISSI Sci. R. Ser., 1, 307 – 322.
dc.identifier.citedreferenceHasegawa, H., M. Fujimoto, T.‐D. Phan, H. Rème, A. Balogh, M. W. Dunlop, C. Hashimoto, and R. TanDokoro ( 2004 ), Transport of solar wind into Earth’s magnetosphere through rolled‐up Kelvin‐Helmholtz vortices, Nature, 430, 755 – 758, doi: 10.1038/nature02799.
dc.identifier.citedreferenceKing, J. H., and N. E. Papitashvili ( 2005 ), Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data, J. Geophys. Res., 110, A02104, doi: 10.1029/2004JA010649.
dc.identifier.citedreferenceLavraud, B., J. E. Borovsky, A. J. Ridley, E. W. Pogue, M. F. Thomsen, H. Rème, A. N. Fazakerley, and E. A. Lucek ( 2007 ), Strong bulk plasma acceleration in Earth’s magnetosheath: A magnetic slingshot effect?, Geophys. Res. Lett., 34, L14102, doi: 10.1029/2007GL030024.
dc.identifier.citedreferenceLe Contel, O., et al. ( 2016 ), The search‐coil magnetometer for MMS, Space Sci. Rev., 199 ( 1 ), 257 – 282, doi: 10.1007/s11214‐014‐0096‐9.
dc.identifier.citedreferenceLi, W., C. Wang, B. Tang, X. Guo, and D. Lin ( 2013 ), Global features of Kelvin‐Helmholtz waves at the magnetopause for northward interplanetary magnetic field, J. Geophys. Res. Space Physics, 118, 5118 – 5126, doi: 10.1002/jgra.50498.
dc.identifier.citedreferenceLi, W. Y., X. C. Guo, and C. Wang ( 2012 ), Spatial distribution of Kelvin‐Helmholtz instability at low‐latitude boundary layer under different solar wind speed conditions, J. Geophys. Res., 117, A08230, doi: 10.1029/2012JA017780.
dc.identifier.citedreferenceNakamura, T. K., D. Hayashi, M. Fujimoto, and I. Shinohara ( 2004 ), Decay of MHD‐scale Kelvin‐Helmholtz vortices mediated by parasitic electron dynamics, Phys. Rev. Lett., 145001( 14 ), doi: 10.1103/PhysRevLett.92.145001.
dc.identifier.citedreferencePlaschke, F. ( 2016 ), ULF waves at the magnetopause, in Low‐Frequency Waves in Space Plasmas, edited by A. Keiling, D.‐H. Lee, and V. Nakariakov, pp. 193 – 212, John Wiley, Hoboken, N. J., doi: 10.1002/9781119055006.ch12.
dc.identifier.citedreferencePlaschke, F., V. Angelopoulos, and K.‐H. Glassmeier ( 2013 ), Magnetopause surface waves: THEMIS observations compared to MHD theory, J. Geophys. Res. Space Physics, 118, 1483 – 1499, doi: 10.1002/jgra.50147.
dc.identifier.citedreferencePollock, C., et al. ( 2016 ), Fast plasma investigation for Magnetospheric Multiscale, Space Sci. Rev., 199 ( 1 ), 331 – 406, doi: 10.1007/s11214‐016‐0245‐4.
dc.identifier.citedreferenceRobert, P., A. Roux, C. C. Harvey, M. W. Dunlop, P. W. Daly, and K.‐H. Glassmeier ( 1998 ), Tetrahedron geometric factors, ISSI Sci. Rep. Ser., 1, 323 – 348.
dc.identifier.citedreferenceRussell, C. T., et al. ( 2016 ), The Magnetospheric Multiscale magnetometers, Space Sci. Rev., 199 ( 1 ), 189 – 256, doi: 10.1007/s11214‐014‐0057‐3.
dc.identifier.citedreferenceShue, J.‐H., et al. ( 1998 ), Magnetopause location under extreme solar wind conditions, J. Geophys. Res., 103, 17,691 – 17,700, doi: 10.1029/98JA01103.
dc.identifier.citedreferenceSibeck, D. G., R. P. Lepping, and A. J. Lazarus ( 1990 ), Magnetic field line draping in the plasma depletion layer, J. Geophys. Res., 95, 2433 – 2440, doi: 10.1029/JA095iA03p02433.
dc.identifier.citedreferenceSibeck, D. G., R. E. Lopez, and E. C. Roelof ( 1991 ), Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96, 5489 – 5495, doi: 10.1029/90JA02464.
dc.identifier.citedreferenceSong, P., R. C. Elphic, and C. T. Russell ( 1988 ), Multi‐spacecraft observations of magnetopause surface waves—ISEE 1 and 2 determinations of amplitude, wavelength and period, Adv. Space Res., 8, 245 – 248, doi: 10.1016/0273‐1177(88)90137‐8.
dc.identifier.citedreferenceSpreiter, J. R., A. L. Summers, and A. Y. Alksne ( 1966 ), Hydromagnetic flow around the magnetosphere, Planet. Space Sci., 14, 223 – 250, doi: 10.1016/0032‐0633(66)90124‐3.
dc.identifier.citedreferenceTorbert, R. B., et al. ( 2016 ), The FIELDS instrument suite on MMS: Scientific objectives, measurements, and data products, Space Sci. Rev., 199 ( 1 ), 105 – 135, doi: 10.1007/s11214‐014‐0109‐8.
dc.identifier.citedreferenceŠafránková, J., M. Hayosh, O. Gutynska, Němeček, and Přech ( 2009 ), Reliability of prediction of the magnetosheath B Z component from interplanetary magnetic field observations, J. Geophys. Res., 114, A12213, doi: 10.1029/2009JA014552.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.