Show simple item record

Response of the equatorial ionosphere to the geomagnetic DP 2 current system

dc.contributor.authorYizengaw, E.
dc.contributor.authorMoldwin, M. B.
dc.contributor.authorZesta, E.
dc.contributor.authorMagoun, M.
dc.contributor.authorPradipta, R.
dc.contributor.authorBiouele, C. M.
dc.contributor.authorRabiu, A. B.
dc.contributor.authorObrou, O. K.
dc.contributor.authorBamba, Z.
dc.contributor.authorPaula, E. R.
dc.date.accessioned2016-10-17T21:20:03Z
dc.date.available2017-09-06T14:20:20Zen
dc.date.issued2016-07-28
dc.identifier.citationYizengaw, E.; Moldwin, M. B.; Zesta, E.; Magoun, M.; Pradipta, R.; Biouele, C. M.; Rabiu, A. B.; Obrou, O. K.; Bamba, Z.; Paula, E. R. (2016). "Response of the equatorial ionosphere to the geomagnetic DP 2 current system." Geophysical Research Letters 43(14): 7364-7372.
dc.identifier.issn0094-8276
dc.identifier.issn1944-8007
dc.identifier.urihttps://hdl.handle.net/2027.42/134255
dc.description.abstractThe response of equatorial ionosphere to the magnetospheric origin DP 2 current system fluctuations is examined using ground‐based multiinstrument observations. The interaction between the solar wind and magnetosphere generates a convection electric field that can penetrate to the ionosphere and cause the DP 2 current system. The quasiperiodic DP 2 current system, which fluctuates coherently with fluctuations of the interplanetary magnetic field (IMF) Bz, penetrates nearly instantaneously to the dayside equatorial region at all longitudes and modulates the electrodynamics that governs the equatorial density distributions. In this paper, using magnetometers at high and equatorial latitudes, we demonstrate that the quasiperiodic DP 2 current system penetrates to the equator and causes the dayside equatorial electrojet (EEJ) and the independently measured ionospheric drift velocity to fluctuate coherently with the high‐latitude DP 2 current as well as with the IMF Bz component. At the same time, radar observations show that the ionospheric density layers move up and down, causing the density to fluctuate up and down coherently with the EEJ and IMF Bz.Key PointsThe solar wind‐magnetosphere interaction generates DP 2 current fluctuationThe DP 2 current fluctuations penetrate to the equator and cause the equatorial electrodynamics to fluctuateIt also causes the equatorial density to fluctuate which might affect the communication and navigation systems
dc.publisherWiley Periodicals, Inc.
dc.publisherCambridge Univ. Press
dc.subject.otherequatorial electrodynamics
dc.subject.otherDP 2 current
dc.titleResponse of the equatorial ionosphere to the geomagnetic DP 2 current system
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelGeological Sciences
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134255/1/grl54722.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134255/2/grl54722_am.pdf
dc.identifier.doi10.1002/2016GL070090
dc.identifier.sourceGeophysical Research Letters
dc.identifier.citedreferenceKikuchi, T., H. Lu¨hr, T. Kitamura, O. Saka, and K. Schlegel ( 1996 ), Direct penetration of the polar electric field to the equator during a DP2 event as detected by the auroral and equatorial magnetometer chains and the EISCAT radar, J. Geophys. Res., 101 ( A8 ), 17,161 – 17,173.
dc.identifier.citedreferenceKikuchi, T., H. Lühr, K. Schlegel, H. Tachihara, M. Shinohara, and T.‐I. Kitamura ( 2000 ), Penetration of auroral electric fields to the equator during a substorm, J. Geophys. Res., 105, 23,251 – 23,261, doi: 10.1029/2000JA900016.
dc.identifier.citedreferenceNishida, A. ( 1968 ), Coherence of geomagnetic DP2 magnetic fluctuations with interplanetary magnetic variations, J. Geophys. Res., 73 ( 17 ), 5549 – 5559.
dc.identifier.citedreferenceMcPherron, R. L. ( 1995 ), Magnetospheric dynamics, in Introduction to Space Physics, edited by M. G. Kivelson and C. T. Russell, pp. 400 – 458, Cambridge Univ. Press, New York.
dc.identifier.citedreferenceLove, J. J., and A. Chulliat ( 2003 ), An international network of magnetic observatories, Eos, 94 ( 42 ), 373 – 374.
dc.identifier.citedreferenceKikuchi, T., K. K. Hashimoto, and K. Nozaki ( 2008 ), Penetration of magnetospheric electric fields to the equator during a geomagnetic storm, J. Geophys. Res., 113, A06214, doi: 10.1029/2007JA012628.
dc.identifier.citedreferenceAnderson, D., A. Anghel, J. Chau, and O. Veliz ( 2004 ), Daytime vertical E  ×  B drift velocities inferred from ground‐based magnetometer observations at low latitudes, Space Weather, 2, S11001, doi: 10.1029/2004SW000095.
dc.identifier.citedreferenceClauer, C. R., and Y. Kamide ( 1985 ), DP l and DP 2 current systems for the March 22, 1979 substorms, J. Geophys. Res., 90, 1343 – 1354.
dc.identifier.citedreferenceHuang, C. S., S. Sazykin, J. L. Chau, N. Maruyama, and M. C. Kelley ( 2007 ), Penetration electric fields: Efficiency and characteristic time scale, J. Atmos. Sol. Terr. Phys., doi: 10.1016/j.jastp.2006.08.06.
dc.identifier.citedreferenceKelley, M. C., J. J. Makela, J. L. Chau, and M. J. Nicolls ( 2003 ), Penetration of the solar wind electric field into the magnetosphere/ionosphere system, Geophys. Res. Lett., 30 ( 4 ), 1158, doi: 10.1029/2002GL016321.
dc.identifier.citedreferenceYizengaw, E., M. B. Moldwin, E. Zesta, C. M. Biouele, B. Damtie, A. Mebrahtu, B. Rabiu, C. E. Valladares, and R. Stoneback ( 2014 ), The longitudinal variability of equatorial electrojet and vertical drift velocity in the African and American sectors, Ann. Geophys., 32, 231 – 238.
dc.identifier.citedreferenceYizengaw, E., E. Zesta, C. M. Biouele, M. B. Moldwin, A. Boudouridis, B. Damtie, A. Mebrahtu, F. Anad, R. F. Pfaff, and M. Hartinger ( 2013 ), Observations of ULF wave related equatorial electrojet fluctuations, J. Atmos. Sol. Terr. Phys., 103, 157 – 168.
dc.identifier.citedreferenceYizengaw, E., and M. B. Moldwin ( 2009 ), African Meridian B‐field Education and Research (AMBER) array, Earth Moon Planet, 104 ( 1 ), 237 – 246, doi: 10.1007/s11038-008-9287-2.
dc.identifier.citedreferenceValladares, C. E., and J. L. Chau ( 2012 ), The low‐latitude ionosphere sensor network: Initial results, Radio Sci., 47, RS0L17, doi: 10.1029/2011RS004978.
dc.identifier.citedreferenceTrivedi, N. B., D. G. Sibeck, E. Zesta, J. C. Santos, K. Yumoto, T. Kitamura, M. Shinohara, and S. L. G. Dutra ( 2002 ), Signatures of traveling convection vortices in ground magnetograms under the equatorial electrojet, J. Geophys. Res., 107, 1087, doi: 10.1029/2001JA000153.
dc.identifier.citedreferenceSobral, J. H. A., M. A. Abdu, W. D. Gonzalez, B. T. Tsurutani, I. S. Batista, and A. L. C. Gonzalez ( 1997 ), Effects of intense storms and substorms on the equatorial ionosphere/thermosphere system in the American sector from ground‐based and satellite data, J. Geophys. Res., 102 ( A7 ), 14,305 – 14,313.
dc.identifier.citedreferenceReinisch, B. W., and I. A. Galkin ( 2011 ), Global Ionospheric Radio Observatory (GIRO), Earth Planet Space, 63 ( 4 ), 377 – 381.
dc.identifier.citedreferenceParker, E. N. ( 1967 ), Small‐scale nonequilibrium of the magnetopause and its consequences, J. Geophys. Res., 72 ( 17 ), 4365 – 4374.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.