Show simple item record

Aeroservoelastic design definition of a 20 MW common research wind turbine model

dc.contributor.authorAshuri, T.
dc.contributor.authorMartins, J. R. R. A.
dc.contributor.authorZaaijer, M. B.
dc.contributor.authorVan kuik, G. A. M.
dc.contributor.authorVan bussel, G. J. W.
dc.date.accessioned2016-10-17T21:20:04Z
dc.date.available2018-01-08T19:47:52Zen
dc.date.issued2016-11
dc.identifier.citationAshuri, T.; Martins, J. R. R. A.; Zaaijer, M. B.; Van kuik, G. A. M. ; Van bussel, G. J. W. (2016). "Aeroservoelastic design definition of a 20 MW common research wind turbine model." Wind Energy 19(11): 2071-2087.
dc.identifier.issn1095-4244
dc.identifier.issn1099-1824
dc.identifier.urihttps://hdl.handle.net/2027.42/134256
dc.description.abstractWind turbine upscaling is motivated by the fact that larger machines can achieve lower levelized cost of energy. However, there are several fundamental issues with the design of such turbines, and there is little public data available for large wind turbine studies. To address this need, we develop a 20 MW common research wind turbine design that is available to the public. Multidisciplinary design optimization is used to define the aeroservoelastic design of the rotor and tower subject to the following constraints: blade‐tower clearance, structural stresses, modal frequencies, tip‐speed and fatigue damage at several sections of the tower and blade. For the blade, the design variables include blade length, twist and chord distribution, structural thicknesses distribution and rotor speed at the rated. The tower design variables are the height, and the diameter distribution in the vertical direction. For the other components, mass models are employed to capture their dynamic interactions. The associated cost of these components is obtained by using cost models. The design objective is to minimize the levelized cost of energy. The results of this research show the feasibility of a 20 MW wind turbine and provide a model with the corresponding data for wind energy researchers to use in the investigation of different aspects of wind turbine design and upscaling. Copyright © 2016 John Wiley & Sons, Ltd.
dc.publisherGrankfurt, Germany
dc.publisherWiley Periodicals, Inc.
dc.subject.other20 MW design
dc.subject.othercommon research wind turbine model
dc.subject.otherupscaling
dc.subject.othermultidisciplinary design optimization
dc.subject.otherwind turbine aeroservoelasticity
dc.titleAeroservoelastic design definition of a 20 MW common research wind turbine model
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMechanical Engineering
dc.subject.hlbtoplevelEngineering
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134256/1/we1970.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134256/2/we1970_am.pdf
dc.identifier.doi10.1002/we.1970
dc.identifier.sourceWind Energy
dc.identifier.citedreferenceBuhl ML. Crunch user’s guide. In Tech. Rep. NREL/EL‐500–30122, National Renewable Energy Laboratory, Golden, Colorado, 2003.
dc.identifier.citedreferenceJonkman BJ, Buhl ML. Turbsim user’s guide. In Tech. Rep. NREL/TP‐500–41136, National Renewable Energy Laboratory, Golden, Colorado, 2007.
dc.identifier.citedreferenceLaino DJ, Hansen AC. User’s guide to the wind turbine dynamics aerodynamics computer software AeroDyn, Tech. Rep. Windward Engineering LLC, Prepared for the National Renewable Energy Laboratory under Subcontract No. TCX‐9‐29209‐01, Salt Lake City, UT, 2002.
dc.identifier.citedreferenceViterna LA, Janetzke DC. Theoretical and experimental power from large horizontal‐axis wind turbines, Tech. Rep. National Aeronautics and Space Administration, Cleveland, OH (USA). Lewis Research Center, 1982.
dc.identifier.citedreferenceJonkman JM, Buhl ML. FAST user’s guide. In Tech. Rep. NREL/EL‐500–29798, National Renewable Energy Laboratory, Golden, Colorado, 2004.
dc.identifier.citedreferenceBir GS. User’s guide to BModes. In Tech. Rep. NREL/TP‐500–39133, National Renewable Energy Laboratory, Golden, Colorado, 2007.
dc.identifier.citedreferenceFrendahl M, Rychlik I. Rainflow analysis: Markov method. International journal of fatigue. 1993; 15 ( 4 ): 265 – 272.
dc.identifier.citedreferenceAshuri T, Zaaijer MB, van Bussel GJW, van Kuik GAM. Controller design automation for aeroservoelastic design optimization of wind turbines. In The Science of Making Torque From Wind: Crete, Greece, 2010; 1 – 7.
dc.identifier.citedreferenceAshuri T, Rotea M, Xiao Y, Li Y, Ponnurangam CV. Wind turbine performance decline and its mitigation via extremum seeking controls. In 34th Wind Energy Sympossium. American Institute of Aeronautics and Astronautics, AIAA: San Diego, California, USA; 1 – 11.
dc.identifier.citedreferenceVan Rooij RP, Timmer WA. Roughness sensitivity considerations for thick rotor blade airfoils. Journal of Solar Energy Engineering. 2003; 125 ( 4 ): 468 – 478.
dc.identifier.citedreferenceTimmer WA, Schaffarczyk AP. The effect of roughness at high reynolds numbers on the performance of aerofoil DU 97‐w‐300mod. Wind Energy. 2004; 7 ( 4 ): 295 – 307.
dc.identifier.citedreferenceDu Z, Selig M. A 3D stall‐delay model for horizontal axis wind turbine performance prediction. In ASME Wind Energy Symposium, Aerospace Sciences Meetings (AIAA‐98‐0021): Reno, Nevada, USA, 1998; 9 – 21.
dc.identifier.citedreferenceEggers AJ, Chaney K, Digumarthi R, Incorporated R. An assessment of approximate modeling of aerodynamic loads on the UAE rotor. In 41st Aerospace Sciences Meeting and Exhibit: Reno, NV, 2003; 6 – 9.
dc.identifier.citedreferenceLeishman JG, Beddoes TS. A semi‐empirical model for dynamic stall. Journal of the American Helicopter Society. 1989; 34 ( 3 ): 3 – 17.
dc.identifier.citedreferenceAshuri T, Zaaijer MB, van Bussel GJW, van Kuik GAM. An analytical model to extract wind turbine blade structural properties for optimization and up‐scaling studies. In The Science of Making Torque From Wind: Crete, Greece, 2010; 1 – 7.
dc.identifier.citedreferenceIEC61400. Wind turbines, Part 3: design requirements for offshore wind turbines, vol. 3, International Electrotechnical Commission: Geneva, Switzerland, 2009.
dc.identifier.citedreferenceAshuri T, van Bussel GJW, Mieras S. Development and validation of a computational model for design analysis of a novel marine turbine. Wind Energy. 2013; 16 ( 1 ): 77 – 90.
dc.identifier.citedreferencevan der Meulen MB, Ashuri T, van Bussel GJW, Molenaar DP. Influence of nonlinear irregular waves on the fatigue loads of an offshore wind turbine. In The Science of Making Torque From Wind: Oldenburg, Germany, 2012; 1 – 10.
dc.identifier.citedreferenceHaghi R, Ashuri T, van der Valk PL, Molenaar DP. Integrated multidisciplinary constrained optimization of offshore support structures. In: The Science of Making Torque from Wind; vol. 555. Journal of Physics. 2012; 555: 012046; p. 1 – 10, doi: 10.1088/1742‐6596/555/1/012046.
dc.identifier.citedreferenceMuskulus M. The full‐height lattice tower concept. Energy Procedia. 2012; 24: 371 – 377.
dc.identifier.citedreferencede Vries W, Vemula NK, Passon P, Fischer T, Kaufer D, Matha D, Schmidt B, Vorpahl F. Final report wp4. 2: support structure concepts for deep water sites. In Tech. Rep., UpWind project, Delft, the Netherlands, 2011.
dc.identifier.citedreferenceVan Der Tempel J. Design of support structures for offshore wind turbines. PhD Thesis, Delft University of Technology, the Netherlands, 2006.
dc.identifier.citedreferenceCapponi PC, Ashuri T, van Bussel GJW, Kallesøe B. 2011. A non‐linear upscaling approach for wind turbine blades based on stresses. In European Wind Energy Conference and Exhibition European Academy of Wind Energy: Brussels, Belgium; 1 – 8.
dc.identifier.citedreferenceAshuri T, Zaaijer MB. Size effect on wind turbine blade’s design drivers. In European Wind Energy Conference and Exhibition: Brussels, Belgium, 2008; 1 – 6.
dc.identifier.citedreferenceBak C, Bitsche R, Yde A, Kim T, Hansen MH, Zahle F, Gaunaa M, Blasques JPAA, Døssing M, Wedel Heinen J‐J, Behrens T. Light rotor: the 10‐MW reference wind turbine. In European Wind Energy Conference and Exhibition: Copenhagen, Denmark, 2012; 1 – 10.
dc.identifier.citedreferenceZahle F, Bak C, Guntur S, Sørensen NN, Troldborg N. Comprehensive aerodynamic analysis of a 10 MW wind turbine rotor using 3D CFD. In Proceedings of 32nd ASME Wind Energy Symposium: National Harbor, Maryland, USA, 2014; 1 – 15.
dc.identifier.citedreferencePeeringa J, Brood R, Ceyhan O, Engels W, de Winkel G. Upwind 20 MW wind turbine pre‐design. In Tech. Rep. ECN, Paper No. ECN‐E–11‐017, Energy research Centre of the Netherlands, Peten, the Netherlands, 2011.
dc.identifier.citedreferencevan Langen P, Hendrinks B. 5 MW UpWind reference wind turbine data. In Tech. Rep. UpWind internal report, Energy research Centre of the Netherlands, Peten, the Netherlands, 2010.
dc.identifier.citedreferenceDahlhaug OG, Berthelsen PA, Kvamsdal T, Frøyd L, Gjerde SS, Zhang Z, Cox K, van Buren E, Zwick D. Specification of the NOWITECH 10 MW reference wind turbine. In Tech. Rep., Norwegian Research Centre for Offshore Wind Technology, Norway, 2012.
dc.identifier.citedreferenceFrøyd L, Dahlhaug O, et al.. Rotor design for a 10 MW offshore wind turbine. In Proceedings of the Twenty‐First International Offshore and Polar Engineering Conference: Maui, Hawaii, USA, 2011; 19 – 24.
dc.identifier.citedreferenceMuskulus M, Christensen E, Zwick D, Merz K. Improved tower design for the NOWITECH 10 MW reference turbine. In European Offshore Wind Energy. Grankfurt, Germany, 2013; 1 – 8.
dc.identifier.citedreferenceKlair SS. Design of nacelle and rotor hub for NOWITECH 10 MW reference turbine. Master thesis, Norwegian University of Science and Technoloy, Norway, 2013.
dc.identifier.citedreferenceBredesen KO. Design of nacelle and yaw bearing for NOWITECH 10 MW reference turbine. Master thesis, Norwegian University of Science and Technoloy, Norway, 2014.
dc.identifier.citedreferenceVatne SR. Aeroelastic instability and flutter for a 10 MW wind turbine. Master thesis, Norwegian University of Science and Technoloy, Norway, 2011.
dc.identifier.citedreferenceFrøyd L, Dahlhaug OG, Hansen MH. Prediction of flutter speed on a 10 MW wind turbine. In EWEA Offshore: Amsterdam; The Netherlands, 2011.
dc.identifier.citedreferenceCox K, Echtermeyer A. Structural design and analysis of a 10 MW wind turbine blade. Energy Procedia. 2012; 24: 194 – 201.
dc.identifier.citedreferenceGriffith DT, Ashwill TD. SNL100‐00: The Sandia 100‐meter all‐glass baseline wind turbine blade. In Tech. Rep. No. SAND2011‐3779, Sandia National Laboratories, Albuquerque, 2011.
dc.identifier.citedreferenceGriffith DT. SNL100‐01: carbon design studies for the sandia 100‐meter blade. In Tech. Rep. SAND2013‐1178, Sandia National Laboratories, Albuquerque, New Mexico, USA, 2013.
dc.identifier.citedreferenceGriffith DT. SNL100‐02: advanced core material design studies for the Sandia 100‐meter blade. In Tech. Rep. SAND2013‐10162, Sandia National Laboratories, Albuquerque, New Mexico, USA, 2013.
dc.identifier.citedreferenceGriffith DT, Richards PW. Investigating the effects of flatback airfoils and blade slenderness on the design of large wind turbine blades. In European Wind Energy Association: barcelona, spain, 2014; 1 – 8.
dc.identifier.citedreferenceLoth E, Ichter B, Selig M, Moriarty P. Downwind pre‐aligned rotor for a 13.2 MW wind turbine. In 33rd Wind Energy Symposium, AIAA SciTech: Kissimmee, Florida, USA, 2015.
dc.identifier.citedreferenceAshuri T, Zaaijer MB, Martins JRRA, van Bussel GJW., van Kuik GAM. Multidisciplinary design optimization of offshore wind turbines for minimum levelized cost of energy. Renewable Energy. 2014; 68: 893 – 905.
dc.identifier.citedreferenceFuglsang P, Thomsen K. Site‐specific design optimization of 1.5–2.0 MW wind turbines. Journal of solar energy engineering. 2001; 123 ( 4 ): 296 – 303.
dc.identifier.citedreferenceMaalawi KY, Badr MA. A practical approach for selecting optimum wind rotors. Renewable energy. 2003; 28 ( 5 ): 803 – 822.
dc.identifier.citedreferenceMéndez J, Greiner D. Wind blade chord and twist angle optimization using genetic algorithms. In Fifth International Conference on Engineering Computational Technology: Las Palmas de Gran Canaria, Spain, 2006; 12 – 15.
dc.identifier.citedreferenceKenway GKW, Martins JRRA. Aerostructural shape optimization of wind turbine blades considering site‐specific winds. In Proceedings of the 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference: Victoria, BC, 2008; 1 – 12. AIAA 2008‐6025.
dc.identifier.citedreferenceXudong W, Shen WZ, Zhu WJ, Sorensen JN, Jin C. Shape optimization of wind turbine blades. Wind Energy. 2009; 12 ( 8 ): 781 – 803.
dc.identifier.citedreferenceMaki K, Sbragio R, Vlahopoulos N. System design of a wind turbine using a multi‐level optimization approach. Renewable Energy. 2012; 43 ( 12 ): 101 – 110.
dc.identifier.citedreferenceAshuri T, Zaaijer MB. Review of design concepts, methods and considerations of offshore wind turbines. In European Offshore Wind Conference and Exhibition: Berlin, Germany, 2007; 1 – 10.
dc.identifier.citedreferenceFingersh L, Hand M, Laxson A. Wind turbine design cost and scaling model. In Tech. Rep. NREL/TP‐500–40566, National Renewable Energy Laboratory, Golden, Colorado, 2006.
dc.identifier.citedreferencePoore R, Lettenmaier T. Alternative design study report: WindPACT Advanced wind turbine drive train designs study. In Tech. Rep. NREL/SR‐500‐33196, National Renewable Energy Laboratory, Golden, CO., 2003.
dc.identifier.citedreferenceGriffin DA. Windpact turbine design scaling studies technical Area 1: composite blades for 80‐to 120‐meter rotor. In Tech. Rep. NREL/SR‐500‐29492, National Renewable Energy Laboratory, Golden, CO, 2001.
dc.identifier.citedreferenceSmith K. Windpact turbine design scaling studies technical Area 2: turbine, rotor, and blade logistics. In Tech. Rep. NREL/SR‐500‐29439, National Renewable Energy Laboratory, Golden, CO, 2001.
dc.identifier.citedreferenceBywaters G, John V, Lynch J, Mattila P, Norton G, Stowell J, Salata M, Labath O, Chertok A, Hablanian D. Northern power systems windpact drive train alternative design study report; period of performance: April 12, 2001 to January 31, 2005. In Tech. Rep. NREL/SR‐500‐35524, National Renewable Energy Laboratory, Golden, CO, 2004.
dc.identifier.citedreferenceShafer DA, Strawmyer KR, Conley RM, Guidinger JH, Wilkie DC, Zellman TF, Bernadett DW. Windpact turbine design scaling studies: technical area 4‐balance‐of‐station cost. In Tech. Rep. NREL/SR‐500‐29950, National Renewable Energy Laboratory, Golden, CO, 2001.
dc.identifier.citedreferenceBrand AJ. Offshore wind atlas of the Dutch part of the North sea. In Tech. Rep. ECN‐M‐09‐050, Energy research Centre of the Netherlands, Petten, 2008.
dc.identifier.citedreferenceMartins JRRA, Lambe AB. Multidisciplinary design optimization: a survey of architectures. AIAA Journal. 2013 Sep; 51 ( 9 ): 2049 – 2075.
dc.identifier.citedreferenceLambe AB, Martins JRRA. Extensions to the design structure matrix for the description of multidisciplinary design, analysis, and optimization processes. Structural and Multidisciplinary Optimization. 2012; 46: 273 – 284.
dc.identifier.citedreferenceNijssen RPL, Zaaijer MB, Bierbooms WAAM, Van Kuik GAM, Van Delft DRV, van Holten T. The application of scaling rules in up‐scaling and marinisation of a wind turbine. In European Wind Energy Conference and Exhibition (EWEC): Brussels, Belgium, 2001; 1 – 4.
dc.identifier.citedreferenceTeng J‐G, Rotter JM. Buckling of Thin Metal Shells. CRC Press, 2006. ISBN 0203301609.
dc.identifier.citedreferenceBhattacharya S, Carrington TM, Aldridge TR. Buckling considerations in pile design. In Proceedings of the International Symposium on Frontiers in Offshore Geotechnics: Perth, WA, Australia, 2005; 815 – 821.
dc.identifier.citedreferenceAshuri T. Beyond classical upscaling: integrated aeroservoelastic design and optimization of large offshore wind turbines. PhD Thesis, Delft University of Technology, the Netherlands, 2012.
dc.identifier.citedreferenceKooijman HJT, Lindenburg C, Winkelaar D, Van der Hooft EL. DOWEC 6 MW pre‐design: aero‐elastic modelling of the DOWEC 6 MW pre‐design in PHATAS. In Tech. Rep., DOWEC Dutch Offshore Wind Energy Converter 1997–2003 Public Reports, Peten, the Netherlands, 2003.
dc.identifier.citedreferenceFleury C. CONLIN: an efficient dual optimizer based on convex approximation concepts. Structural and Multidisciplinary Optimization. 1989; 1 ( 2 ): 81 – 89.
dc.identifier.citedreferenceBirgin EG, Martinez JM. Improving ultimate convergence of an augmented Lagrangian method. Optimization Methods and Software. 2008; 23 ( 2 ): 177 – 195.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.