Show simple item record

Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies

dc.contributor.authorKatz, Daniel S. W.
dc.contributor.authorIbáñez, Inés
dc.date.accessioned2016-10-17T21:20:06Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationKatz, Daniel S. W.; Ibáñez, Inés (2016). "Foliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies." Ecology (9): 2331-2341.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/134258
dc.description.abstractPlant distributions are expected to shift in response to climate change, and range expansion dynamics will be shaped by the performance of individuals at the colonizing front. These plants will encounter new biotic communities beyond their range edges, and the net outcome of these encounters could profoundly affect colonization success. However, little is known about how biotic interactions vary across range edges and this has hindered efforts to predict changes in species distributions in response to climate change. In contrast, a rich literature documents how biotic interactions within species ranges vary according to distance to and density of conspecific individuals. Here, we test whether this framework can be extended to explain how biotic interactions differ beyond range edges, where conspecific adults are basically absent. To do so, we planted seven species of trees along a 450‐km latitudinal gradient that crossed the current distributional range of five of these species and monitored foliar disease and invertebrate herbivory over 5 yr. Foliar disease and herbivory were analyzed as a function of distance to and density of conspecific and congeneric trees at several spatial scales. We found that within species ranges foliar disease was lower for seedlings that were farther from conspecific adults for Acer rubrum, Carya glabra, Quercus alba, and Robinia pseudoacacia. Beyond range edges, there was even less foliar disease for C. glabra, Q. alba, and R. pseudoacacia (A. rubrum was not planted outside its range). Liriodendron tulipifera did not experience reduced disease within or beyond its range. In contrast, Quercus velutina displayed significant but idiosyncratic patterns in disease at varying distances from conspecifics. Patterns of distance dependent herbivory across spatial scales was generally weak and in some cases negative (i.e., seedlings farther from conspecific adults had more herbivory). Overall, we conclude that differences in biotic interactions across range edges can be thought of as a spatial extension to the concept of distance dependent biotic interactions. This framework also provides the basis for general predictions of how distance dependent biotic interactions will change across range edges in other systems.
dc.publisherWiley Periodicals, Inc.
dc.publisherCentre for Agricultural Publishing and Documentation
dc.subject.otherrange expansion
dc.subject.otherrecruitment
dc.subject.otherseedlings
dc.subject.othertemperate forests
dc.subject.othertransplant experiment
dc.subject.otherspecies distributions
dc.subject.otherbiotic interactions
dc.subject.otherdistance dependence
dc.subject.otherEnemy Release Hypothesis
dc.subject.otherfoliar disease
dc.subject.otherherbivory
dc.subject.otherJanzen‐Connell Hypothesis
dc.titleFoliar damage beyond species distributions is partly explained by distance dependent interactions with natural enemies
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134258/1/ecy1468.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134258/2/ecy1468_am.pdf
dc.identifier.doi10.1002/ecy.1468
dc.identifier.sourceEcology
dc.identifier.citedreferencePiao, T., L. S. Comita, G. Jin, and J. H. Kim. 2013. Density dependence across multiple life stages in a temperate old‐growth forest of northeast China. Oecologia 172: 207 – 217.
dc.identifier.citedreferencePacker, A., and K. Clay. 2000. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature 404: 278 – 281.
dc.identifier.citedreferenceParker, J. D., and M. E. Hay. 2005. Biotic resistance to plant invasions? Native herbivores prefer non‐native plants. Ecology Letters 8: 959 – 967.
dc.identifier.citedreferenceParker, I. M., M. Saunders, M. Bontrager, A. P. Weitz, R.   Hendricks, R. Magarey, K. Suiter, and G. S. Gilbert. 2015. Phylogenetic structure and host abundance drive disease pressure in communities. Nature 520: 542 – 544.
dc.identifier.citedreferencePatot, S., J. Martinez, R. Allemand, S. Gandon, J. Varaldi, and F. Fleury. 2010. Prevalence of a virus inducing behavioural manipulation near species range border. Molecular Ecology 19: 2995 – 3007.
dc.identifier.citedreferencePearse, I. S., and A. L. Hipp. 2009. Phylogenetic and trait similarity to a native species predict herbivory on non‐native oaks. Proceedings of the National Academy of Sciences USA 106: 18097 – 18102.
dc.identifier.citedreferencePhillips, B., G. Brown, and R. Shine. 2010a. Life‐history evolution in range‐shifting populations. Ecology 91: 1617 – 1627.
dc.identifier.citedreferencePhillips, B., C. Kelehear, L. Pizzatto, G. Brown, D. Barton, and R. Shine. 2010b. Parasites and pathogens lag behind their host during periods of host range advance. Ecology 91: 872 – 881.
dc.identifier.citedreferencePlummer, M. 2003. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. http://mcmc-jags.sourceforge.net/
dc.identifier.citedreferencePlummer, M. 2014. rjags: Bayesian graphical models using MCMC. https://cran.r-project.org/web/packages/rjags/rjags.pdf
dc.identifier.citedreferencePrasad, A., L. Iverson, S. Matthews, and M. Peters. 2007. A cimate change atlas for 134 forest tree species of the eastern United States (database). Northern Research Station, USDA Forest Service, Delaware, Ohio, USA. http://www.nrs.fs.fed.us/atlas/tree.
dc.identifier.citedreferencePrior, K. M., T. H. Q. Powell, A. L. Joseph, and J. J. Hellmann. 2015. Insights from community ecology into the role of enemy release in causing invasion success: the importance of native enemy effects. Biological Invasions 17: 1283 – 1297.
dc.identifier.citedreferenceR Core Team. 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org
dc.identifier.citedreferenceRenwick, K. M., and M. E. Rocca. 2015. Temporal context affects the observed rate of climate‐driven range shifts in tree species. Global Ecology and Biogeography 24: 44 – 51.
dc.identifier.citedreferenceRicklefs, R. E. 2008. Foliage chemistry and the distribution of Lepidoptera larvae on broad‐leaved trees in southern Ontario. Oecologia 157: 53 – 67.
dc.identifier.citedreferenceSchultheis, E. H., A. E. Berardi, and J. A. Lau. 2015. No release for the wicked: enemy release is dynamic and not associated with invasiveness. Ecology 96: 2446 – 2457.
dc.identifier.citedreferenceSicard, D., P. Pennings, C. Grandclément, J. Acosta, O. Kaltz, and J. Shykoff. 2007. Specialization and local adaptation of a fungal parasite on two host plant species as revealed by two fitness traits. Evolution 61: 27 – 41.
dc.identifier.citedreferenceSinclair, W., and H. Lyon. 2005. Diseases of trees and shrubs. Cornell University Press, Ithaca, New York, USA.
dc.identifier.citedreferenceSpiegelhalter, D. J., N. G. Best, B. P. Carlin, and A. van der Linde. 2002. Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society 64: 583 – 639.
dc.identifier.citedreferenceStanton‐Geddes, J., and C. G. Anderson. 2011. Does a facultative mutualism limit species range expansion? Oecologia 167: 149 – 155.
dc.identifier.citedreferencevan der Putten, W. H. 2011. Climate change, aboveground‐belowground interactions, and species’ range shifts. Annual Review of Ecology, Evolution, and Systematics 43: 365 – 383.
dc.identifier.citedreferencevan Grunsven, R. H. A., W. H. van der Putten, T. Martijn Bezemer, F. Berendse, and E. M. Veenendaal. 2010. Plant–soil interactions in the expansion and native range of a poleward shifting plant species. Global Change Biology 16: 380 – 385.
dc.identifier.citedreferenceVan Kleunen, M., E. Weber, and M. Fischer. 2010. A meta‐analysis of trait differences between invasive and non‐invasive plant species. Ecology Letters 13: 235 – 245.
dc.identifier.citedreferenceVerhoeven, K. J. F., A. Biere, J. A. Harvey, and W. H. Van Der Putten. 2009. Plant invaders and their novel natural enemies: Who is naive? Ecology Letters 12: 107 – 117.
dc.identifier.citedreferenceWickham, H. 2009. ggplot2: elegant graphics for data analysis. Springer, New York, New York, USA.
dc.identifier.citedreferenceWilliams, J. W., and S. T. Jackson. 2007. Novel climates, no‐analog communities, and ecological surprises. Frontiers in Ecology and the Environment 5: 475 – 482.
dc.identifier.citedreferenceYamazaki, M., S. Iwamoto, and K. Seiwa. 2009. Distance‐ and density‐dependent seedling mortality caused by several diseases in eight tree species co‐occurring in a temperate forest. Plant Ecology 201: 181 – 196.
dc.identifier.citedreferenceZhu, K., C. W. Woodall, and J. S. Clark. 2012. Failure to migrate: lack of tree range expansion in response to climate change. Global Change Biology 18: 1042 – 1052.
dc.identifier.citedreferenceAlexander, H. M., S. Price, R. Houser, D. Finch, and M.   Tourtellot. 2007. Is there reduction in disease and pre‐dispersal seed predation at the border of a host plant’s range? Field and herbarium studies of Carex blanda. Journal of Ecology 95: 446 – 457.
dc.identifier.citedreferenceBarrett, L. G., J. M. Kniskern, N. Bodenhausen, W. Zhang, and J. Bergelson. 2009. Continua of specificity and virulence in plant host–pathogen interactions: causes and consequences. New Phytologist 183: 513 – 529.
dc.identifier.citedreferenceBirnbaum, C., and M. R. Leishman. 2013. Plant‐soil feedbacks do not explain invasion success of Acacia species in introduced range populations in Australia. Biological Invasions 15: 2609 – 2625.
dc.identifier.citedreferenceBlumenthal, D., C. E. Mitchell, P. Pysek, and V. Jarosík. 2009. Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences USA 106: 7899 – 7904.
dc.identifier.citedreferenceBoisvert‐Marsh, L., C. Périé, and S. de Blois. 2014. Shifting with climate? Evidence for recent changes in tree species distribution at high latitudes. Ecosphere 5: 1 – 33.
dc.identifier.citedreferenceCallaway, R. M., E. J. Bedmar, K. O. Reinhart, C. G. Silvan, and J. Klironomos. 2011. Effects of soil biota from different ranges on Robinia invasion: acquiring mutualists and escaping pathogens. Ecology 92: 1027 – 1035.
dc.identifier.citedreferenceComita, L. S., S. A. Queenborough, S. J. Murphy, J. L. Eck, K.   Xu, M. Krishnadas, N. Beckman, and Y. Zhu. 2014. Testing predictions of the Janzen‐Connell hypothesis: a meta‐analysis of experimental evidence for distance‐ and density‐dependent seed and seedling survival. Journal of Ecology 102: 845 – 856.
dc.identifier.citedreferenceConnell, J. H. 1971. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. Pages 298 – 312 in P. J. den Boer and G. R. Gradwell, editors. Dynamics of populations. Centre for Agricultural Publishing and Documentation, Wageningen, the Netherlands.
dc.identifier.citedreferenceCronin, J. P., M. E. Welsh, M. G. Dekkers, S. T. Abercrombie, and C. E. Mitchell. 2010. Host physiological phenotype explains pathogen reservoir potential. Ecology Letters 13: 1221 – 1232.
dc.identifier.citedreferenceDesprez, J., B. V. Iannone III, P. Yang, C. M. Oswalt, and S.   Fei. 2014. Northward migration under a changing climate: a case study of blackgum ( Nyssa sylvatica ). Climatic Change 126: 151 – 162.
dc.identifier.citedreferenceDiez, J. M., I. Dickie, G. Edwards, P. E. Hulme, J. J. Sullivan, and R. P. Duncan. 2010. Negative soil feedbacks accumulate over time for non‐native plant species. Ecology Letters 13: 803 – 809.
dc.identifier.citedreferenceFarkas, T. E., and M. S. Singer. 2013. Can caterpillar density or host‐plant quality explain host‐plant‐related parasitism of a generalist forest caterpillar assemblage? Oecologia 173: 971 – 983.
dc.identifier.citedreferenceFlory, S. L., and K. Clay. 2013. Pathogen accumulation and long‐term dynamics of plant invasions. Journal of Ecology 101: 607 – 613.
dc.identifier.citedreferenceForister, M. L., V. Novotny, A. K. Panorska, L. Baje, Y. Basset, and P. T. Butterill. 2015. The global distribution of diet breadth in insect herbivores. Proceedings of the National Academy of Sciences USA 112: 442 – 447.
dc.identifier.citedreferenceGelman, A., and J. Hill. 2007. Data analysis using regression and multilevel/hierarchical models. Cambridge University Press, Cambridge, UK.
dc.identifier.citedreferenceGilbert, G. S., and C. O. Webb. 2007. Phylogenetic signal in plant pathogen‐host range. Proceedings of the National Academy of Sciences USA 104: 4979 – 4983.
dc.identifier.citedreferenceHalbritter, A. H., G. C. Carroll, S. Güsewell, and B. A. Roy. 2012. Testing assumptions of the enemy release hypothesis: generalist versus specialist enemies of the grass Brachypodium sylvaticum. Mycologia 104: 34 – 44.
dc.identifier.citedreferenceHartley, S. E., and A. C. Gange. 2009. Impacts of plant symbiotic fungi on insect herbivores: mutualism in a multitrophic context. Annual Review of Entomology 54: 323 – 342.
dc.identifier.citedreferenceHawkes, C. V. 2007. Are invaders moving targets? The generality and persistence of advantages in size, reproduction, and enemy release in invasive plant species with time since introduction. American Naturalist 170: 832 – 843.
dc.identifier.citedreferenceHeger, T., and J. M. Jeschke. 2014. The enemy release hypothesis as a hierarchy of hypotheses. Oikos 123: 741 – 750.
dc.identifier.citedreferenceHeil, M. 2008. Indirect defence via tritrophic interactions. New Phytologist 178: 41 – 61.
dc.identifier.citedreferenceHilleRisLambers, J., J. S. Clark, and B. Beckage. 2002. Density‐dependent mortality and the latitudinal gradient in species diversity. Nature 417: 732 – 735.
dc.identifier.citedreferenceIverson, L. R., A. M. Prasad, S. N. Matthews, and M. Peters. 2008. Estimating potential habitat for 134 eastern US tree species under six climate scenarios. Forest Ecology and Management 254: 390 – 406.
dc.identifier.citedreferenceJanzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. American Naturalist 104: 501 – 528.
dc.identifier.citedreferenceJohnson, D. J., W. T. Beaulieu, J. D. Bever, and K. Clay. 2012. Conspecific negative density dependence and forest diversity. Science 336: 904 – 907.
dc.identifier.citedreferenceJohnson, D. M., N. A. Bourg, R. Howe, W. J. McShea, A.   Wolf, and K. Clay. 2014. Conspecific negative density‐dependent mortality and the structure of temperate forests. Ecology 95: 2493 – 2503.
dc.identifier.citedreferenceKeane, R. M., and M. J. Crawley. 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17: 164 – 170.
dc.identifier.citedreferenceKoricheva, J., A. C. Gange, and T. Jones. 2009. Effects of mycorrhizal fungi on insect herbivores: a meta‐analysis. Ecology 90: 2088 – 2097.
dc.identifier.citedreferenceKuussaari, M., M. Singer, and I. Hanski. 2000. Local specialization and landscape‐level influence on host use in an herbivorous insect. Ecology 81: 2177 – 2187.
dc.identifier.citedreferenceLakeman‐Fraser, P., and R. M. Ewers. 2013. Enemy release promotes range expansion in a host plant. Oecologia 172: 1203 – 1212.
dc.identifier.citedreferenceLiang, M., X. Liu, R. S. Etienne, F. Huang, Y. Wang, and S.   Yu. 2015. Arbuscular mycorrhizal fungi counteract the Janzen‐Connell effect of soil pathogens. Ecology 96: 562 – 574.
dc.identifier.citedreferenceLiu, H., and P. Stiling. 2006. Testing the enemy release hypothesis: a review and meta‐analysis. Biological Invasions 8: 1535 – 1545.
dc.identifier.citedreferenceMasaki, T., and T. Nakashizuka. 2002. Seedling demography of Swida controversa: effect of light and distance to conspecifics. Ecology 83: 3497 – 3507.
dc.identifier.citedreferenceMcCarthy‐Neumann, S., and I. Ibáñez. 2012. Tree range expansion may be enhanced by escape from negative plant–soil feedbacks. Ecology 93: 2637 – 2649.
dc.identifier.citedreferenceMcCarthy‐Neumann, S., and I. Ibáñez. 2013. Plant‐soil feedback links negative distance dependence and light gradient partitioning during seedling establishment. Ecology 94: 780 – 786.
dc.identifier.citedreferenceMenéndez, R., A. González‐Megías, O. T. Lewis, M. R. Shaw, and C. D. Thomas. 2008. Escape from natural enemies during climate‐driven range expansion: a case study. Ecological Entomology 33: 413 – 421.
dc.identifier.citedreferenceMitchell, C. E., and A. G. Power. 2003. Release of invasive plants from fungal and viral pathogens. Nature 421: 625 – 627.
dc.identifier.citedreferenceMitchell, C. E., D. Blumenthal, V. Jarošík, E. E. Puckett, and P.   Pyšek. 2010. Controls on pathogen species richness in plants’ introduced and native ranges: roles of residence time, range size and host traits. Ecology Letters 13: 1525 – 1535.
dc.identifier.citedreferenceMoorcroft, P. R., S. W. Pacala, and M. A. Lewis. 2006. Potential role of natural enemies during tree range expansions following climate change. Journal of Theoretical Biology 241: 601 – 616.
dc.identifier.citedreferenceMurphy, H. T., J. Vanderwal, and J. Lovett‐Doust. 2010. Signatures of range expansion and erosion in eastern North American trees. Ecology Letters 13: 1233 – 1244.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.