Show simple item record

Cellular Hypoxia Promotes Heterotopic Ossification by Amplifying BMP Signaling

dc.contributor.authorWang, Haitao
dc.contributor.authorLindborg, Carter
dc.contributor.authorLounev, Vitali
dc.contributor.authorKim, Jung‐hoon
dc.contributor.authorMccarrick‐walmsley, Ruth
dc.contributor.authorXu, Meiqi
dc.contributor.authorMangiavini, Laura
dc.contributor.authorGroppe, Jay C
dc.contributor.authorShore, Eileen M
dc.contributor.authorSchipani, Ernestina
dc.contributor.authorKaplan, Frederick S
dc.contributor.authorPignolo, Robert J
dc.date.accessioned2016-10-17T21:20:11Z
dc.date.available2017-11-01T15:31:29Zen
dc.date.issued2016-09
dc.identifier.citationWang, Haitao; Lindborg, Carter; Lounev, Vitali; Kim, Jung‐hoon ; Mccarrick‐walmsley, Ruth ; Xu, Meiqi; Mangiavini, Laura; Groppe, Jay C; Shore, Eileen M; Schipani, Ernestina; Kaplan, Frederick S; Pignolo, Robert J (2016). "Cellular Hypoxia Promotes Heterotopic Ossification by Amplifying BMP Signaling." Journal of Bone and Mineral Research 31(9): 1652-1665.
dc.identifier.issn0884-0431
dc.identifier.issn1523-4681
dc.identifier.urihttps://hdl.handle.net/2027.42/134262
dc.description.abstractHypoxia and inflammation are implicated in the episodic induction of heterotopic endochondral ossification (HEO); however, the molecular mechanisms are unknown. HIFâ 1α integrates the cellular response to both hypoxia and inflammation and is a prime candidate for regulating HEO. We investigated the role of hypoxia and HIFâ 1α in fibrodysplasia ossificans progressiva (FOP), the most catastrophic form of HEO in humans. We found that HIFâ 1α increases the intensity and duration of canonical bone morphogenetic protein (BMP) signaling through Rabaptin 5 (RABEP1)â mediated retention of Activin A receptor, type I (ACVR1), a BMP receptor, in the endosomal compartment of hypoxic connective tissue progenitor cells from patients with FOP. We further show that early inflammatory FOP lesions in humans and in a mouse model are markedly hypoxic, and inhibition of HIFâ 1α by genetic or pharmacologic means restores canonical BMP signaling to normoxic levels in human FOP cells and profoundly reduces HEO in a constitutively active Acvr1Q207D/+ mouse model of FOP. Thus, an inflammation and cellular oxygenâ sensing mechanism that modulates intracellular retention of a mutant BMP receptor determines, in part, its pathologic activity in FOP. Our study provides critical insight into a previously unrecognized role of HIFâ 1α in the hypoxic amplification of BMP signaling and in the episodic induction of HEO in FOP and further identifies HIFâ 1α as a therapeutic target for FOP and perhaps nongenetic forms of HEO. © 2016 American Society for Bone and Mineral Research.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherFIBRODYSPLASIA OSSIFICANS PROGRESSIVA
dc.subject.otherCELL/TISSUE SIGNALING
dc.subject.otherPRECLINICAL STUDIES
dc.titleCellular Hypoxia Promotes Heterotopic Ossification by Amplifying BMP Signaling
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelInternal Medicine and Specialities
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134262/1/jbmr2848_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134262/2/jbmr2848.pdf
dc.identifier.doi10.1002/jbmr.2848
dc.identifier.sourceJournal of Bone and Mineral Research
dc.identifier.citedreferenceCulbert AL, Chakkalakal SA, Theosmy EG, Brennan TA, Kaplan FS, Shore EM. Alk2 regulates early chondrogenic fate in fibrodysplasia ossificans progressiva heterotopic endochondral ossification. Stem Cells. 2014; 32 ( 5 ): 1289 â 300.
dc.identifier.citedreferenceMaegdefrau U, Amann T, Winklmeier A, et al. Bone morphogenetic protein 4 is induced in hepatocellular carcinoma by hypoxia and promotes tumour progression. J Pathol. 2009; 218 ( 4 ): 520 â 9.
dc.identifier.citedreferenceMizuno Y, Tokuzawa Y, Ninomiya Y, et al. miRâ 210 promotes osteoblastic differentiation through inhibition of AcvR1b. FEBS Lett. 2009; 583 ( 13 ): 2263 â 8.
dc.identifier.citedreferenceTian F, Zhou AX, Smits AM, et al. Endothelial cells are activated during hypoxia via endoglin/ALKâ 1/SMAD1/5 signaling in vivo and in vitro. Biochem Biophys Res Commun. 2010; 392 ( 3 ): 283 â 8.
dc.identifier.citedreferenceTseng WP, Yang SN, Lai CH, Tang CH. Hypoxia induces BMPâ 2 expression via ILK, Akt, mTOR, and HIFâ 1 pathways in osteoblasts. J Cell Physiol. 2010; 223 ( 3 ): 810 â 8.
dc.identifier.citedreferenceZeigerer A, Gilleron J, Bogorad RL, et al. Rab5 is necessary for the biogenesis of the endolysosomal system in vivo. Nature. 2012; 485 ( 7399 ): 465 â 70.
dc.identifier.citedreferenceShore EM, Xu M, Feldman GJ, et al. A recurrent mutation in the BMP type I receptor ACVR1 causes inherited and sporadic fibrodysplasia ossificans progressiva. Nat Genet. 2006;38 (5): 525 â 7.
dc.identifier.citedreferenceLievens PM, Mutinelli C, Baynes D, Liboi E. The kinase activity of fibroblast growth factor receptor 3 with activation loop mutations affects receptor trafficking and signaling. J Biol Chem. 2004; 279 ( 41 ): 43254 â 60.
dc.identifier.citedreferenceRandolph ME, Pavlath GK. A muscle stem cell for every muscle: variability of satellite cell biology among different muscle groups. Front Aging Neurosci. 2015; 7: 190.
dc.identifier.citedreferenceHatsell SJ, Idone V, Wolken DM, et al. ACVR1R206H receptor mutation causes fibrodysplasia ossificans progressiva by imparting responsiveness to activin A. Sci Transl Med. 2015; 7 ( 303 ): 303ra137.
dc.identifier.citedreferenceHino K, Ikeya M, Horigome K, et al. Neofunction of ACVR1 in fibrodysplasia ossificans progressiva. Proc Natl Acad Sci U S A. 2015;112 (50): 15438 â 43.
dc.identifier.citedreferenceChakkalakal SA, Zhang D, Culbert AL, et al. An Acvr1 R206H knockâ in mouse has fibrodysplasia ossificans progressiva. J Bone Miner Res. 2012; 27 ( 8 ): 1746 â 56.
dc.identifier.citedreferenceLin L, Shen Q, Leng H, Duan X, Fu X, Yu C. Synergistic inhibition of endochondral bone formation by silencing Hif1alpha and Runx2 in traumaâ induced heterotopic ossification. Mol Ther. 2011; 19 ( 8 ): 1426 â 32.
dc.identifier.citedreferenceKaraman MW, Herrgard S, Treiber DK, et al. A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol. 2008; 26 ( 1 ): 127 â 32.
dc.identifier.citedreferenceEmerling BM, Viollet B, Tormos KV, Chandel NS. Compound C inhibits hypoxic activation of HIFâ 1 independent of AMPK. FEBS Lett. 2007; 581 ( 29 ): 5727 â 31.
dc.identifier.citedreferenceKoh MY, Spivakâ Kroizman TR, Powis G. Inhibiting the hypoxia response for cancer therapy: the new kid on the block. Clin Cancer Res. 2009; 15 ( 19 ): 5945 â 6.
dc.identifier.citedreferenceSemenza GL. Defining the role of hypoxiaâ inducible factor 1 in cancer biology and therapeutics. Oncogene. 2010; 29 ( 5 ): 625 â 34.
dc.identifier.citedreferenceWerner CM, Zimmermann SM, Wurglerâ Hauri CC, Lane JM, Wanner GA, Simmen HP. Use of imatinib in the prevention of heterotopic ossification. HSS J. 2013; 9 ( 2 ): 166 â 70.
dc.identifier.citedreferenceDewar AL, Farrugia AN, Condina MR, et al. Imatinib as a potential antiresorptive therapy for bone disease. Blood. 2006; 107 ( 11 ): 4334 â 7.
dc.identifier.citedreferenceFitter S, Dewar AL, Kostakis P, et al. Longâ term imatinib therapy promotes bone formation in CML patients. Blood. 2008; 111 ( 5 ): 2538 â 47.
dc.identifier.citedreferenceGoto T, Hagiwara K, Shirai N, Yoshida K, Hagiwara H. Apigenin inhibits osteoblastogenesis and osteoclastogenesis and prevents bone loss in ovariectomized mice. Cytotechnology. 2015; 67 ( 2 ): 357 â 65.
dc.identifier.citedreferencePark JA, Ha SK, Kang TH, et al. Protective effect of apigenin on ovariectomyâ induced bone loss in rats. Life Sci. 2008;82(25â 26): 1217 â 23.
dc.identifier.citedreferenceWan C, Gilbert SR, Wang Y, et al. Activation of the hypoxiaâ inducible factorâ 1alpha pathway accelerates bone regeneration. Proc Natl Acad Sci U S A. 2008; 105 ( 2 ): 686 â 91.
dc.identifier.citedreferenceKolar P, Gaber T, Perka C, Duda GN, Buttgereit F. Human early fracture hematoma is characterized by inflammation and hypoxia. Clin Orthop Relat Res. 2011; 469 ( 11 ): 3118 â 26.
dc.identifier.citedreferenceTaylor CT, McElwain JC. Ancient atmospheres and the evolution of oxygen sensing via the hypoxiaâ inducible factor in metazoans. Physiology (Bethesda). 2010; 25 ( 5 ): 272 â 9.
dc.identifier.citedreferenceGill BC, Lyons TW, Young SA, Kump LR, Knoll AH, Saltzman MR. Geochemical evidence for widespread euxinia in the later Cambrian ocean. Nature. 2011; 469 ( 7328 ): 80 â 3.
dc.identifier.citedreferenceLowe CJ, Terasaki M, Wu M, et al. Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol. 2006; 4 ( 9 ): e291.
dc.identifier.citedreferenceRomero NM, Dekanty A, Wappner P. Cellular and developmental adaptations to hypoxia: a Drosophila perspective. Methods Enzymol. 2007; 435: 123 â 44.
dc.identifier.citedreferenceLe VQ, Wharton KA. Hyperactive BMP signaling induced by ALK2(R206H) requires type II receptor function in a Drosophila model for classic fibrodysplasia ossificans progressiva. Dev Dyn. 2012; 241 ( 1 ): 200 â 14.
dc.identifier.citedreferenceKaplan FS, Shen Q, Lounev V, et al. Skeletal metamorphosis in fibrodysplasia ossificans progressiva (FOP). J Bone Miner Metab. 2008; 26 ( 6 ): 521 â 30.
dc.identifier.citedreferencePignolo RJ, Foley KL. Nonhereditary heterotopic ossification: implications for injury, arthropathy, and aging. Clin Rev Bone Miner Metab. 2005; 3: 261 â 6.
dc.identifier.citedreferenceKaplan FS, Xu M, Seemann P, et al. Classic and atypical fibrodysplasia ossificans progressiva (FOP) phenotypes are caused by mutations in the bone morphogenetic protein (BMP) type I receptor ACVR1. Hum Mutat. 2009; 30 ( 3 ): 379 â 90.
dc.identifier.citedreferenceChaikuad A, Alfano I, Kerr G, et al. Structure of the bone morphogenetic protein receptor ALK2 and implications for fibrodysplasia ossificans progressiva. J Biol Chem. 2012; 287 ( 44 ): 36990 â 8.
dc.identifier.citedreferenceAoyama M, Sunâ Wada GH, Yamamoto A, Yamamoto M, Hamada H, Wada Y. Spatial restriction of bone morphogenetic protein signaling in mouse gastrula through the mVam2â dependent endocytic pathway. Dev Cell. 2012; 22 ( 6 ): 1163 â 75.
dc.identifier.citedreferenceKaplan FS, Pignolo RJ, Shore EM. The FOP metamorphogene encodes a novel type I receptor that dysregulates BMP signaling. Cytokine Growth Factor Rev. 2009;20(5â 6): 399 â 407.
dc.identifier.citedreferenceEltzschig HK, Carmeliet P. Hypoxia and inflammation. N Engl J Med. 2011; 364 ( 7 ): 656 â 65.
dc.identifier.citedreferenceWang Y, Roche O, Yan MS, et al. Regulation of endocytosis via the oxygenâ sensing pathway. Nat Med. 2009; 15 ( 3 ): 319 â 24.
dc.identifier.citedreferencede la Pena LS, Billings PC, Fiori JL, Ahn J, Kaplan FS, Shore EM. Fibrodysplasia ossificans progressiva (FOP), a disorder of ectopic osteogenesis, misregulates cell surface expression and trafficking of BMPRIA. J Bone Miner Res. 2005; 20 ( 7 ): 1168 â 76.
dc.identifier.citedreferenceGleason RJ, Akintobi AM, Grant BD, Padgett RW. BMP signaling requires retromerâ dependent recycling of the type I receptor. Proc Natl Acad Sci U S A. 2014; 111 ( 7 ): 2578 â 83.
dc.identifier.citedreferenceKim S, Wairkar YP, Daniels RW, DiAntonio A. The novel endosomal membrane protein Ema interacts with the class C Vpsâ HOPS complex to promote endosomal maturation. J Cell Biol. 2010; 188 ( 5 ): 717 â 34.
dc.identifier.citedreferenceSeto ES, Bellen HJ, Lloyd TE. When cell biology meets development: endocytic regulation of signaling pathways. Genes Dev. 2002; 16 ( 11 ): 1314 â 36.
dc.identifier.citedreferenceMarxsen JH, Stengel P, Doege K, et al. Hypoxiaâ inducible factorâ 1 (HIFâ 1) promotes its degradation by induction of HIFâ alphaâ prolylâ 4â hydroxylases. Biochem J. 2004;381(Pt 3): 761 â 7.
dc.identifier.citedreferenceRius J, Guma M, Schachtrup C, et al. NFâ kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIFâ 1alpha. Nature. 2008; 453 ( 7196 ): 807 â 11.
dc.identifier.citedreferenceLoboda A, Jozkowicz A, Dulak J. HIFâ 1 and HIFâ 2 transcription factorsâ similar but not identical. Mol Cells. 2010; 29 ( 5 ): 435 â 42.
dc.identifier.citedreferenceAraldi E, Schipani E. Hypoxia, HIFs and bone development. Bone. 2010; 47 ( 2 ): 190 â 6.
dc.identifier.citedreferenceSchipani E, Ryan HE, Didrickson S, Kobayashi T, Knight M, Johnson RS. Hypoxia in cartilage: HIFâ 1alpha is essential for chondrocyte growth arrest and survival. Genes Dev. 2001; 15 ( 21 ): 2865 â 76.
dc.identifier.citedreferenceWang Y, Wan C, Deng L, et al. The hypoxiaâ inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J Clin Invest. 2007; 117 ( 6 ): 1616 â 26.
dc.identifier.citedreferenceHung MC, Mills GB, Yu D. Oxygen sensor boosts growth factor signaling. Nat Med. 2009; 15 ( 3 ): 246 â 7.
dc.identifier.citedreferenceThomas C, Strutt D. Rabaptinâ 5 and Rabexâ 5 are neoplastic tumour suppressor genes that interact to modulate Rab5 dynamics in Drosophila melanogaster. Dev Biol. 2014; 385 ( 1 ): 107 â 21.
dc.identifier.citedreferencePignolo RJ, Suda RK, Kaplan FS. The fibrodysplasia ossificans progressiva lesion. Clin Rev Bone Miner Metab. 2005; 3: 195 â 200.
dc.identifier.citedreferenceFukuda T, Scott G, Komatsu Y, et al. Generation of a mouse with conditionally activated signaling through the BMP receptor, ALK2. Genesis. 2006; 44 ( 4 ): 159 â 67.
dc.identifier.citedreferenceYu PB, Deng DY, Lai CS, et al. BMP type I receptor inhibition reduces heterotopic [corrected] ossification. Nat Med. 2008; 14 ( 12 ): 1363 â 9.
dc.identifier.citedreferenceShen Q, Little SC, Xu M, et al. The fibrodysplasia ossificans progressiva R206H ACVR1 mutation activates BMPâ independent chondrogenesis and zebrafish embryo ventralization. J Clin Invest. 2009; 119 ( 11 ): 3462 â 72.
dc.identifier.citedreferenceShimono K, Tung WE, Macolino C, et al. Potent inhibition of heterotopic ossification by nuclear retinoic acid receptorâ gamma agonists. Nat Med. 2011; 17 ( 4 ): 454 â 60.
dc.identifier.citedreferenceBillings PC, Fiori JL, Bentwood JL, et al. Dysregulated BMP signaling and enhanced osteogenic differentiation of connective tissue progenitor cells from patients with fibrodysplasia ossificans progressiva (FOP). J Bone Miner Res. 2008; 23 ( 3 ): 305 â 13.
dc.identifier.citedreferenceChen YG. Endocytic regulation of TGFâ beta signaling. Cell Res. 2009; 19 ( 1 ): 58 â 70.
dc.identifier.citedreferenceFang J, Zhou Q, Liu LZ, et al. Apigenin inhibits tumor angiogenesis through decreasing HIFâ 1alpha and VEGF expression. Carcinogenesis. 2007; 28 ( 4 ): 858 â 64.
dc.identifier.citedreferenceLitz J, Krystal GW. Imatinib inhibits câ Kitâ induced hypoxiaâ inducible factorâ 1alpha activity and vascular endothelial growth factor expression in small cell lung cancer cells. Mol Cancer Ther. 2006; 5 ( 6 ): 1415 â 22.
dc.identifier.citedreferenceLee K, Kim HM. A novel approach to cancer therapy using PXâ 478 as a HIFâ 1alpha inhibitor. Arch Pharm Res. 2011; 34 ( 10 ): 1583 â 5.
dc.identifier.citedreferenceWelsh S, Williams R, Kirkpatrick L, Paineâ Murrieta G, Powis G. Antitumor activity and pharmacodynamic properties of PXâ 478, an inhibitor of hypoxiaâ inducible factorâ 1alpha. Mol Cancer Ther. 2004; 3 ( 3 ): 233 â 44.
dc.identifier.citedreferenceMaes C, Carmeliet G, Schipani E. Hypoxiaâ driven pathways in bone development, regeneration and disease. Nat Rev Rheumatol. 2012; 8 ( 6 ): 358 â 66.
dc.identifier.citedreferenceDunwoodie SL. The role of hypoxia in development of the Mammalian embryo. Dev Cell. 2009; 17 ( 6 ): 755 â 73.
dc.identifier.citedreferenceSemenza GL. Oxygen sensing, hypoxiaâ inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014; 9: 47 â 71.
dc.identifier.citedreferenceMohyeldin A, Garzonâ Muvdi T, Quinonesâ Hinojosa A. Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell. 2010; 7 ( 2 ): 150 â 61.
dc.identifier.citedreferenceSimon MC, Keith B. The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol. 2008; 9 ( 4 ): 285 â 96.
dc.identifier.citedreferenceMathieu J, Zhou W, Xing Y, et al. Hypoxiaâ inducible factors have distinct and stageâ specific roles during reprogramming of human cells to pluripotency. Cell Stem Cell. 2014; 14 ( 5 ): 592 â 605.
dc.identifier.citedreferenceYoshida Y, Takahashi K, Okita K, Ichisaka T, Yamanaka S. Hypoxia enhances the generation of induced pluripotent stem cells. Cell Stem Cell. 2009; 5 ( 3 ): 237 â 41.
dc.identifier.citedreferenceMedici D, Shore EM, Lounev VY, Kaplan FS, Kalluri R, Olsen BR. Conversion of vascular endothelial cells into multipotent stemâ like cells. Nat Med. 2010; 16 ( 12 ): 1400 â 6.
dc.identifier.citedreferenceRomeroâ Lanman EE, Pavlovic S, Amlani B, Chin Y, Benezra R. Id1 maintains embryonic stem cell selfâ renewal by upâ regulation of Nanog and repression of Brachyury expression. Stem Cells Dev. 2012; 21 ( 3 ): 384 â 93.
dc.identifier.citedreferenceYing QL, Nichols J, Chambers I, Smith A. BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell selfâ renewal in collaboration with STAT3. Cell. 2003; 115 ( 3 ): 281 â 92.
dc.identifier.citedreferenceFontebasso AM, Papillonâ Cavanagh S, Schwartzentruber J, et al. Recurrent somatic mutations in ACVR1 in pediatric midline highâ grade astrocytoma. Nat Genet. 2014; 46 ( 5 ): 462 â 6.
dc.identifier.citedreferenceTaylor KR, Mackay A, Truffaux N, et al. Recurrent activating ACVR1 mutations in diffuse intrinsic pontine glioma. Nat Genet. 2014; 46 ( 5 ): 457 â 61.
dc.identifier.citedreferenceWu G, Diaz AK, Paugh BS, et al. The genomic landscape of diffuse intrinsic pontine glioma and pediatric nonâ brainstem highâ grade glioma. Nat Genet. 2014; 46 ( 5 ): 444 â 50.
dc.identifier.citedreferenceBuczkowicz P, Hoeman C, Rakopoulos P, et al. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nat Genet. 2014; 46 ( 5 ): 451 â 6.
dc.identifier.citedreferenceZadeh G, Aldape K. ACVR1 mutations and the genomic landscape of pediatric diffuse glioma. Nat Genet. 2014; 46 ( 5 ): 421 â 2.
dc.identifier.citedreferenceDizon ML, Maa T, Kessler JA. The bone morphogenetic protein antagonist noggin protects white matter after perinatal hypoxiaâ ischemia. Neurobiol Dis. 2011; 42 ( 3 ): 318 â 26.
dc.identifier.citedreferenceEmans PJ, Spaapen F, Surtel DA, et al. A novel in vivo model to study endochondral bone formation; HIFâ 1alpha activation and BMP expression. Bone. 2007; 40 ( 2 ): 409 â 18.
dc.identifier.citedreferenceFrank DB, Abtahi A, Yamaguchi DJ, et al. Bone morphogenetic protein 4 promotes pulmonary vascular remodeling in hypoxic pulmonary hypertension. Circ Res. 2005; 97 ( 5 ): 496 â 504.
dc.identifier.citedreferenceGelse K, Muhle C, Knaup K, et al. Chondrogenic differentiation of growth factorâ stimulated precursor cells in cartilage repair tissue is associated with increased HIFâ 1alpha activity. Osteoarthritis Cartilage. 2008; 16 ( 12 ): 1457 â 65.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.