Show simple item record

Effects of the noncompetitive N‐methyl‐d‐aspartate receptor antagonists ketamine and MK‐801 on pain‐stimulated and pain‐depressed behaviour in rats

dc.contributor.authorHillhouse, T.M.
dc.contributor.authorNegus, S.S.
dc.date.accessioned2016-10-17T21:20:13Z
dc.date.available2017-11-01T15:31:30Zen
dc.date.issued2016-09
dc.identifier.citationHillhouse, T.M.; Negus, S.S. (2016). "Effects of the noncompetitive N‐methyl‐d‐aspartate receptor antagonists ketamine and MK‐801 on pain‐stimulated and pain‐depressed behaviour in rats." European Journal of Pain 20(8): 1229-1240.
dc.identifier.issn1090-3801
dc.identifier.issn1532-2149
dc.identifier.urihttps://hdl.handle.net/2027.42/134264
dc.description.abstractBackgroundPain is a significant public health concern, and current pharmacological treatments have problematic side effects and limited effectiveness. N‐methyl‐d‐aspartate (NMDA) glutamate receptor antagonists have emerged as one class of candidate treatments for pain because of the significant contribution of glutamate signalling in nociceptive processing.MethodsThis study compared effects of the NMDA receptor antagonists ketamine and MK‐801 in assays of pain‐stimulated and pain‐depressed behaviour in rats. The nonsteroidal anti‐inflammatory drug ketoprofen was examined for comparison as a positive control. Intraperitoneal injection of dilute acid served as an acute visceral noxious stimulus to stimulate a stretching response or depress intracranial self‐stimulation (ICSS) in male Sprague–Dawley rats.ResultsKetamine (1.0–10.0 mg/kg) blocked acid‐stimulated stretching but failed to block acid‐induced depression of ICSS, whereas MK‐801 (0.01–0.1 mg/kg) blocked both acid‐stimulated stretching and acid‐induced depression of ICSS. These doses of ketamine and MK‐801 did not alter control ICSS in the absence of the noxious stimulus; however, higher doses of ketamine (10 mg/kg) and MK‐801 (0.32 mg/kg) depressed all behaviour. Ketoprofen (1.0 mg/kg) blocked both acid‐induced stimulation of stretching and depression of ICSS without altering control ICSS.ConclusionThese results support further consideration of NMDA receptor antagonists as analgesics; however, some NMDA receptor antagonists are more efficacious at attenuating pain‐depressed behaviours.What does this study addNMDA receptor antagonists produce dissociable effects on pain‐depressed behaviour.Provides evidence that pain‐depressed behaviours should be considered and evaluated when determining the antinociceptive effects of NMDA receptor antagonists.
dc.publisherWiley Periodicals, Inc.
dc.titleEffects of the noncompetitive N‐methyl‐d‐aspartate receptor antagonists ketamine and MK‐801 on pain‐stimulated and pain‐depressed behaviour in rats
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelAnesthesiology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134264/1/ejp847_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134264/2/ejp847.pdf
dc.identifier.doi10.1002/ejp.847
dc.identifier.sourceEuropean Journal of Pain
dc.identifier.citedreferenceRosenberg, M.B., Carroll, F.I., Negus, S.S. ( 2013 ). Effects of monoamine reuptake inhibitors in assays of acute pain‐stimulated and pain‐depressed behavior in rats. J Pain 14, 246 – 259.
dc.identifier.citedreferenceSabetkasaie, M., Khansefid, N., Ladgevardi, M.A.R.S. ( 2007 ). Possible role of NMDA receptors in antinociception induced by rilmenidine in mice in the formalin test. Eur J Pain 11, 535 – 541.
dc.identifier.citedreferenceSawynok, J. ( 2014 ). Topical and peripheral ketamine as an analgesic. Anest Analg 119, 170 – 178.
dc.identifier.citedreferenceSawynok, J., Reid, A. ( 2002 ). Modulation of formalin‐induced behaviors and edema by local and systemic administration of dextromethorphan, memantine and ketamine. Eur J Pharmacol 450, 153 – 162.
dc.identifier.citedreferenceSchwartzman, R.J., Alexander, G.M., Grothusen, J.R., Paylor, T., Reichenberger, E., Perreault, M. ( 2009 ). Outpatient intravenous ketamine for the treatment of complex regional pain syndrome: A double‐blind placebo controlled study. Pain 147, 107 – 115.
dc.identifier.citedreferenceSeguin, L., Le Marouille‐Girardon, S., Millan, M.J. ( 1995 ). Antinociceptive profiles of non‐peptidergic neurokinin1 and neurokinin2 receptor antagonists: A comparison to other classes of antinociceptive agent. Pain 61, 325 – 343.
dc.identifier.citedreferenceSigtermans, M.J., van Hilten, J.J., Bauer, M.C.R., Arbous, M.S., Marinus, J., Sarton, E.Y., Dahan, A. ( 2009 ). Ketamine produces effective and long‐term pain relief in patients with Complex Regional Pain Syndrome Type 1. Pain 145, 304 – 311.
dc.identifier.citedreferenceSmith, D.J., Bouchal, R.L., DeSanctis, C.A., Monroe, P.J., Amedro, J.B., Perrotti, J.M., Crisp, T. ( 1987 ). Properties of the interaction between ketamine and opiate binding sites in vivo and in vitro. Neuropharmacology 26, 1253 – 1260.
dc.identifier.citedreferenceSmith, J., Gastambide, F., Gilmour, G., Dix, S., Foss, J., Lloyd, K., Malik, N., Tricklebank, M. ( 2011 ). A comparison of the effects of ketamine and phencyclidine with other antagonists of the NMDA receptor in rodent assays of attention and working memory. Psychopharmacology 217, 255 – 269.
dc.identifier.citedreferenceSuardíaz, M., Estivill‐Torrús, G., Goicoechea, C., Bilbao, A., Rodríguez de Fonseca, F. ( 2007 ). Analgesic properties of oleoylethanolamide (OEA) in visceral and inflammatory pain. Pain 133, 99 – 110.
dc.identifier.citedreferenceSwartjes, M., Morariu, A., Niesters, M., Aarts, L., Dahan, A. ( 2011 ). Nonselective and NR2B‐selective N ‐methyl‐D‐aspartic acid receptor antagonists produce antinocicpetion and long‐term relief of allodynia in acute and neuropathic pain. Anesthesiology 115, 165 – 174.
dc.identifier.citedreferenceTakahashi, R.N., Morato, G.S., Rae, G.A. ( 1987 ). Effects of ketamine on nociception and gastrointestinal motility in mice are unaffected by naloxone. Gen Pharmacol 18, 201 – 203.
dc.identifier.citedreferenceTurk, D.C., Dworkin, R.H., McDermott, M.P., Bellamy, N., Burke, L.B., Chandler, J.M., Cleeland, C.S., Cowan, P., Dimitrova, R., Farrar, J.T., Hertz, S, Heyse, JF, Iyengar, S, Jadad, AR, Jay, GW, Jermano, JA, Katz, NP, Manning, DC, Martin, S, Max, MB, McGrath, P, McQuay, HJ, Quessy, S, Rappaport, BA, Revicki, DA, Rothman, M, Stauffer, JW, Svensson, O, White, RE, Witter, Jz ( 2008 ). Analyzing multiple endpoints in clinical trials of pain treatments: IMMPACT recommendations. Pain 139, 485 – 493.
dc.identifier.citedreferenceVeys, E.M. ( 1991 ). 20 years’ experience with ketoprofen. Scand J Rheumatol Suppl 90, 1 – 44.
dc.identifier.citedreferenceWang, J., Goffer, Y., Xu, D., Tukey, D.S., Shamir, D.B., Eberle, S.E., Zou, A.H., Blanck, T.J., Ziff, E.B. ( 2011 ). A single subanesthic dose of ketamine relieves depression‐like behaviors induced by neuropathic pain in rats. Anesthesiology 115, 812 – 821.
dc.identifier.citedreferenceWozniak, K.M., Rojas, C., Wu, Y., Slusher, B.S. ( 2012 ). The role of glutamate signaling in pain processes and its regulation by GCP II inhibition. Curr Med Chem 19, 1323 – 1334.
dc.identifier.citedreferenceAltarifi, A.A., Rice, K.C., Negus, S.S. ( 2015 ). Effects of μ‐opioid receptor agonists in assays of acute pain‐stimulated and pain‐depressed behavior in male rats: Role of μ‐agonist efficacy and noxious stimulus intensity. J Pharmacol Exp Ther 352, 208 – 217.
dc.identifier.citedreferenceAmr, Y.M. ( 2010 ). Multi‐day low dose ketamine infusion as adjuvant to oral gabapentin in spinal cord injury related chronic pain: A prospective, randomized, double blind trial. Pain Physician 13, 245 – 249.
dc.identifier.citedreferenceAndreasen, J.T., Bach, A., Gynther, M., Nasser, A., Mogensen, J., Strømgaard, K., Pickering, D.S. ( 2013 ). UCCB01‐125, a dimeric inhibitor of PSD‐95, reduces inflammatory pain without disrupting cognitive or motor performance: Comparison with the NMDA receptor antagonist MK‐801. Neuropharmacology 67, 193 – 200.
dc.identifier.citedreferenceBackonja, M., Arndt, G., Gombar, K.A., Check, B., Zimmermann, M. ( 1994 ). Response of chronic neuropathic pain syndromes to ketamine: A preliminary study. Pain 56, 51 – 57.
dc.identifier.citedreferenceBespalov, A., Lebedev, A., Panchenko, G., Zvartau, E. ( 1999 ). Effects of abused drugs on thresholds and breaking points of intracranial self‐stimulation in rats. Eur Neuropsychopharmacol 9, 377 – 383.
dc.identifier.citedreferenceBleakman, D., Alt, A., Nisenbaum, E.S. ( 2006 ). Glutamate receptors and pain. Semin Cell Dev Biol 17, 592 – 604.
dc.identifier.citedreferenceBresink, I., Danysz, W., Parsons, C.G., Mutschler, E. ( 1995 ). Different binding affinities of NMDA receptor channel blockers in various brain regions—Indication of NMDA receptor heterogeneity. Neuropharmacology 34, 533 – 540.
dc.identifier.citedreferenceBulutcu, F., Dogrul, A., Oguz Güç, M. ( 2002 ). The involvement of nitric oxide in the analgesic effects of ketamine. Life Sci 71, 841 – 853.
dc.identifier.citedreferenceCaldwell, J.R. ( 1994 ). Comparison of the efficacy, safety, and pharmacokinetic profiles of extended‐release ketoprofen and piroxicam in patients with rheumatoid arthritis. Clin Ther 16, 222 – 235.
dc.identifier.citedreferenceCarlezon, W.A., Chartoff, E.H. ( 2007 ). Intracranial self‐stimulation (ICSS) in rodents to study the neurobiology of motivation. Nat Protocols 2, 2987 – 2995.
dc.identifier.citedreferenceCarlezon, W.A. Jr, Wise, R.A. ( 1993 ). Morphine‐induced potentiation of brain stimulation reward is enhanced by MK‐801. Brain Res 620, 339 – 342.
dc.identifier.citedreferenceCenter for Behavioral Health Statistics and Quality. ( 2015 ). Behavioral Health Trends in the United States: Results from the 2014 National Survey on Drug Use and Health (HHS Publication No. SMA 15‐4927, NSDUH Series H‐50)
dc.identifier.citedreferenceChristoph, T., Schiene, K., Englberger, W., Parsons, C.G., Chizh, B.A. ( 2006 ). The antiallodynic effect of NMDA antagonists in neuropathic pain outlasts the duration of the in vivo NMDA antagonism. Neuropharmacology 51, 12 – 17.
dc.identifier.citedreferenceCleeland, C.S., Ryan, K.M. ( 1994 ). Pain assessment: Global use of the Brief Pain Inventory. Ann Acad Med Singapore 23, 129 – 138.
dc.identifier.citedreferenceCorbett, D. ( 1989 ). Possible abuse potential of the NMDA antagonist MK‐801. Behav Brain Res 34, 239 – 246.
dc.identifier.citedreferenceFelsby, S., Nielsen, J., Arendt‐Nielsen, L., Jensen, T.S. ( 1996 ). NMDA receptor blockade in chronic neuropathic pain: A comparison of ketamine and magnesium chloride. Pain 64, 283 – 291.
dc.identifier.citedreferenceFinck, A.D., Samaniego, E., Ngai, S.H. ( 1988 ). Morphine tolerance decreases the analgesic effects of ketamine in mice. Anesthesiology 68, 397 – 400.
dc.identifier.citedreferenceFundytus, M.E. ( 2001 ). Glutamate receptors and nociception: Implications for the drug treatment of pain. CNS Drugs 15, 29 – 58.
dc.identifier.citedreferenceGilmour, G., Pioli, E., Dix, S., Smith, J., Conway, M., Jones, W., Loomis, S., Mason, R., Shahabi, S., Tricklebank, M. ( 2009 ). Diverse and often opposite behavioural effects of NMDA receptor antagonists in rats: Implications for “NMDA antagonist modelling” of schizophrenia. Psychopharmacology 205, 203 – 216.
dc.identifier.citedreferenceHerberg, L.J., Rose, I.C. ( 1989 ). The effect of MK‐801 and other antagonists of NMDA‐type glutamate receptors on brain‐stimulation reward. Psychopharmacology 99, 87 – 90.
dc.identifier.citedreferenceHillhouse, T.M., Porter, J.H. ( 2014 ). Ketamine, but not MK‐801, produces antidepressant‐like effects in rats responding on a differential‐reinforcement‐of‐low‐rate operant schedule. Behav Pharmacol 25, 80 – 91.
dc.identifier.citedreferenceHillhouse, T., Porter, J., Negus, S.S. ( 2014 ). Dissociable effects of the noncompetitive NMDA receptor antagonists ketamine and MK‐801 on intracranial self‐stimulation in rats. Psychopharmacology 231, 2705 – 2716.
dc.identifier.citedreferenceHirota, K., Hashimoto, Y., Lambert, D.G. ( 2002 ). Interaction of intravenous anesthetics with recombinant human M1‐M3 muscarinic receptors expressed in Chinese hamster ovary cells. Anest Analg 95, 1607 – 1610.
dc.identifier.citedreferenceJahangiri, L., Kesmati, M., Najafzadeh, H. ( 2013 ). Evaluation of analgesic and anti‐inflammatory effect of nanoparticles of magnesium oxide in mice with and without ketamine. Eur Rev Med Pharmacol Sci 17, 2706 – 2710.
dc.identifier.citedreferenceJørum, E., Warncke, T., Stubhaug, A. ( 2003 ). Cold allodynia and hyperalgesia in neuropathic pain: The effect of N‐methyl‐ d ‐aspartate (NMDA) receptor antagonist ketamine – A double‐blind, cross‐over comparison with alfentanil and placebo. Pain 101, 229 – 235.
dc.identifier.citedreferenceKim, K., Mishina, M., Kokubo, R., Nakajima, T., Morimoto, D., Isu, T., Kobayashi, S., Teramoto, A. ( 2013 ). Ketamine for acute neuropathic pain in patients with spinal cord injury. J Clin Neurosci 20, 804 – 807.
dc.identifier.citedreferenceKokki, H., Homan, E., Tuovinen, K., Purhonen, S. ( 1999 ). Peroperative treatment with i.v. ketoprofen reduces pain and vomiting in children after strabismus surgery. Acta Anaesthesiol Scand 43, 13 – 18.
dc.identifier.citedreferenceKuiken, S., Berg, S.T.V., Tytgat, G.J., Boeckxstaens, G.E. ( 2004 ). Oral S(+)‐ketamine does not change visceral perception in health. Dig Dis Sci 49, 1745 – 1751.
dc.identifier.citedreferenceKwilasz, A.J., Negus, S.S. ( 2012 ). Dissociable effects of the cannabinoid receptor agonists Δ9‐Tetrahydrocannabinol and CP55940 on pain‐stimulated versus pain‐depressed behavior in rats. J Pharmacol Exp Ther 343, 389 – 400.
dc.identifier.citedreferenceKwilasz, A.J., Abdullah, R.A., Poklis, J.L., Lichtman, A.H., Negus, S.S. ( 2014 ). Effects of the fatty acid amide hydrolase inhibitor URB597 on pain‐stimulated and pain‐depressed behavior in rats. Behav Pharmacol 25, 119 – 129.
dc.identifier.citedreferenceLeitl, M.D., Onvani, S., Bowers, M.S., Cheng, K., Rice, K.C., Carlezon, W.A. Jr, Banks, M.L., Negus, S.S. ( 2014 ). Pain‐related depression of the mesolimbic dopamine system in rats: Expression, blockade by analgesics, and role of endogenous [kappa]‐opioids. Neuropsychopharmacology 39, 614 – 624.
dc.identifier.citedreferenceLeung, A., Wallace, M.S., Ridgeway, B., Yaksh, T. ( 2001 ). Concentration–effect relationship of intravenous alfentanil and ketamine on peripheral neurosensory thresholds, allodynia and hyperalgesia of neuropathic pain. Pain 91, 177 – 187.
dc.identifier.citedreferenceMalec, D., Poleszak, E. ( 2005 ). Adenosine receptor ligands and dizocilpine‐induced antinociception in mice. Int J Neurosci 115, 511 – 522.
dc.identifier.citedreferenceMcMillan, D.E., Wright, D.W., Wenger, G.R. ( 1992 ). Effects of phencyclidine‐like drugs on responding under multiple fixed ratio, fixed interval schedules. Behav Pharmacol 3, 143 – 147.
dc.identifier.citedreferenceMillan, M.J., Seguin, L. ( 1994 ). Chemically‐diverse ligands at the glycine B site coupled to N ‐methyl‐ d ‐aspartate (NMDA) receptors selectively block the late phase of formalin‐induced pain in mice. Neurosci Lett 178, 139 – 143.
dc.identifier.citedreferenceMiller, L.L., Altarifi, A.A., Negus, S.S. ( 2015a ). Effects of repeated morphine on intracranial self‐stimulation in male rats in the absence or presence of a noxious pain stimulus. Exp Clin Psychopharmacol 23, 405 – 414.
dc.identifier.citedreferenceMiller, L.L., Leitl, M.D., Banks, M.L., Blough, B.E., Negus, S.S. ( 2015b ). Effects of the triple monoamine uptake inhibitor amitifadine on pain‐related depression of behavior and mesolimbic dopamine release in rats. Pain 156, 175 – 184.
dc.identifier.citedreferenceNegus, S.S. ( 2013 ). Expression and treatment of pain‐related behavioral depression. Lab Animal 42, 292+.
dc.identifier.citedreferenceNegus, S.S., Miller, L.L. ( 2014 ). Intracranial self‐stimulation to evaluate abuse potential of drugs. Pharmacol Rev 66, 869 – 917.
dc.identifier.citedreferenceNegus, S.S., Bilsky, E., Carmo, G., Stevenson, G. ( 2010a ). Rationale and methods for assessment of pain‐depressed behavior in preclinical assays of pain and analgesia. In: Analgesia, A. Szallasi, ed. (Humana Press) pp. 79 – 91.
dc.identifier.citedreferenceNegus, S.S., Morrissey, E., Rosenberg, M., Cheng, K., Rice, K. ( 2010b ). Effects of kappa opioids in an assay of pain‐depressed intracranial self‐stimulation in rats. Psychopharmacology 210, 149 – 159.
dc.identifier.citedreferenceNegus, S.S., O’Connell, R., Morrissey, E., Cheng, K., Rice, K.C. ( 2012a ). Effects of peripherally restricted κ opioid receptor agonists on pain‐related stimulation and depression of behavior in rats. J Pharmacol Exp Ther 340, 501 – 509.
dc.identifier.citedreferenceNegus, S.S., Rosenberg, M.B., Altarifi, A.A., O’Connell, R.H., Folk, J.E., Rice, K.C. ( 2012b ). Effects of the delta opioid receptor agonist SNC80 on pain‐related depression of intracranial self‐stimulation (ICSS) in rats. J Pain 13, 317 – 327.
dc.identifier.citedreferenceNiesters, M., Dahan, A. ( 2012 ). Pharmacokinetic and pharmacodynamic considerations for NMDA receptor antagonists in the treatment of chronic neuropathic pain. Expert Opin Drug Metab Toxicol 8, 1409 – 1417.
dc.identifier.citedreferenceNiesters, M., Martini, C., Dahan, A. ( 2014 ). Ketamine for chronic pain: Risks and benefits. Br J Clin Pharmacol 77, 357 – 367.
dc.identifier.citedreferenceNishimura, M., Sato, K., Okada, T., Schloss, P., Shimada, S., Tohyama, M. ( 1998a ). MK‐801 blocks monoamine transporters expressed in HEK cells. FEBS Lett 423, 376 – 380.
dc.identifier.citedreferenceNishimura, M., Sato, K., Okada, T., Yoshiya, I., Schloss, P., Shimada, S., Tohyama, M. ( 1998b ). Ketamine inhibits monoamine transporters expressed in human embryonic kidney 293 cells. Anesthesiology 88, 768 – 774.
dc.identifier.citedreferencePereira Do Carmo, G., Stevenson, G.W., Carlezon, W.A., Negus, S.S. ( 2009 ). Effects of pain‐ and analgesia‐related manipulations on intracranial self‐stimulation in rats: Further studies on pain‐depressed behavior. Pain 144, 170 – 177.
dc.identifier.citedreferenceRyder, S., Way, W.L., Trevor, A.J. ( 1978 ). Comparative pharmacology of the optical isomers of ketamine in mice. Eur J Pharmacol 49, 15 – 23.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.