Show simple item record

Can trait patterns along gradients predict plant community responses to climate change?

dc.contributor.authorGuittar, John
dc.contributor.authorGoldberg, Deborah
dc.contributor.authorKlanderud, Kari
dc.contributor.authorTelford, Richard J.
dc.contributor.authorVandvik, Vigdis
dc.date.accessioned2016-10-17T21:20:25Z
dc.date.available2017-12-01T21:54:12Zen
dc.date.issued2016-10
dc.identifier.citationGuittar, John; Goldberg, Deborah; Klanderud, Kari; Telford, Richard J.; Vandvik, Vigdis (2016). "Can trait patterns along gradients predict plant community responses to climate change?." Ecology 97(10): 2791-2801.
dc.identifier.issn0012-9658
dc.identifier.issn1939-9170
dc.identifier.urihttps://hdl.handle.net/2027.42/134276
dc.description.abstractPlant functional traits vary consistently along climate gradients and are therefore potential predictors of plant community response to climate change. We test this space‐for‐time assumption by combining a spatial gradient study with whole‐community turf transplantation along temperature and precipitation gradients in a network of 12 grassland sites in Southern Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs over 5 yr, we quantify trait‐based responses to climate change by comparing observed community dynamics in transplanted turfs to field‐parameterized null model simulations. Three traits related to species architecture (maximum height, number of dormant meristems, and ramet‐ramet connection persistence) varied consistently along spatial temperature gradients and also correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature gradients but did not correlate to changes in species abundances following warming. No traits correlated consistently with precipitation. Our study supports the hypothesis that spatial associations between plant traits and broad‐scale climate variables can be predictive of community response to climate change, but it also suggests that not all traits with clear patterns along climate gradients will necessarily influence community response to an equal degree.
dc.publisherOxford University Press
dc.publisherWiley Periodicals, Inc.
dc.subject.otherplant functional traits
dc.subject.otherturf transplantation
dc.subject.otheralpine plant communities
dc.subject.otherclonal traits
dc.subject.othercommunity response
dc.subject.otherenvironmental gradient analysis
dc.subject.othergrasslands
dc.titleCan trait patterns along gradients predict plant community responses to climate change?
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelEcology and Evolutionary Biology
dc.subject.hlbtoplevelScience
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134276/1/ecy1500.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134276/2/ecy1500_am.pdf
dc.identifier.doi10.1002/ecy.1500
dc.identifier.sourceEcology
dc.identifier.citedreferenceRoyal Botanic Gardens Kew. 2014. Seed information database (SID).
dc.identifier.citedreferenceKörner, C. 2007. The use of “altitude” in ecological research. Trends in Ecology & Evolution 22: 569 – 574.
dc.identifier.citedreferenceKraft, N. J. B., R. Valencia, and D. D. Ackerly. 2008. Functional traits and niche‐based tree community assembly in an Amazonian forest. Science 322: 580.
dc.identifier.citedreferenceKudo, G., Y. Nishikawa, T. Kasagi, and S. Kosuge. 2004. Does seed production of spring ephemerals decrease when spring comes early? Ecological Research 19: 255 – 259.
dc.identifier.citedreferenceLavorel, S., and E. Garnier. 2002. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Functional Ecology 16: 545 – 556.
dc.identifier.citedreferenceLid, J., and D. T. Lid. 2007. Norsk flora. Det Norske Samlaget, Oslo, Norway.
dc.identifier.citedreferenceMcGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution 21: 178 – 185.
dc.identifier.citedreferenceMutshinda, C. M., R. B. O’Hara, and I. P. Woiwod. 2008. Species abundance dynamics under neutral assumptions: a Bayesian approach to the controversy. Functional Ecology 22: 340 – 347.
dc.identifier.citedreferenceNeilson, R. R. P., L. L. F. Pitelka, A. M. Solomon, R. Nathan, G. F. Midgley, J. M. V. Fragoso, H. Lischke, and K.   Thompson. 2005. Forecasting regional to global plant migration in response to climate change. BioScience 55: 749.
dc.identifier.citedreferenceOlsen, S. L., J. P. Töpper, O. Skarpaas, V. Vandvik, and K.   Klanderud. 2016. From facilitation to competition: temperature‐driven shift in dominant plant interactions affects population dynamics in semi‐natural grasslands. Global Change Biology 22: 1915 – 1926.
dc.identifier.citedreferencePlummer, M. 2003. JAGS: a program for analysis of Bayesian graphical models using Gibbs sampling. Proceedings of the 3rd International Workshop on Distributed Statistical Computing (DSC 2003), March 20–22, Vienna, Austria.
dc.identifier.citedreferencePost, E., and C. Pedersen. 2008. Opposing plant community responses to warming with and without herbivores. Proceedings of the National Academy of Sciences USA 105: 12353 – 12358.
dc.identifier.citedreferenceCornelissen, J. H. C., Y.‐B. Song, F.‐H. Yu, and M. Dong. 2014. Plant traits and ecosystem effects of clonality: a new research agenda. Annals of Botany 114: 369 – 376.
dc.identifier.citedreferenceRusch, G. M., B. Wilmann, J. Klimešová, and M. Evju. 2011. Do clonal and bud bank traits vary in correspondence with soil properties and resource acquisition strategies? Patterns in alpine communities in the Scandian mountains. Folia Geobotanica 46: 237 – 254.
dc.identifier.citedreferenceSchwinning, S., and J. Weiner. 1998. Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113: 447 – 455.
dc.identifier.citedreferenceShipley, B., C. E. T. Paine, and C. Baraloto. 2011. Quantifying the importance of local niche‐based and stochastic processes to tropical tree community assembly. Ecology 93: 760 – 769.
dc.identifier.citedreferenceShipley, B., D. Vile, and E. Garnier. 2006. From plant traits to plant communities: a statistical mechanistic approach to biodiversity. Science (New York, New York, USA) 314: 812 – 814.
dc.identifier.citedreferenceSilvertown, J. 2004. Plant coexistence and the niche. Trends in Ecology and Evolution 19: 605 – 611.
dc.identifier.citedreferenceSterck, F., L. Poorter, and F. Schieving. 2006. Leaf traits determine the growth‐survival trade‐off across rain forest tree species. American Naturalist 167: 758 – 765.
dc.identifier.citedreferenceSu, Y. S., and M. Yajima. 2015. R2jags: a package for running jags from R. R package version 0.5‐7. https://cran.r-project.org/web/packages/R2jags/index.html
dc.identifier.citedreferenceTilman, D. 2004. Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences USA 101: 10854 – 10861.
dc.identifier.citedreferenceViolle, C., M. Navas, D. Vile, E. Kazakou, C. Fortunel, I.   Hummel, and E. Garnier. 2007. Let the concept of trait be functional! Oikos 116: 882 – 892.
dc.identifier.citedreferenceVisser, M. E. 2008. Keeping up with a warming world; assessing the rate of adaptation to climate change. Proceedings of the Royal Society of London B: Biological Sciences 275: 649 – 659.
dc.identifier.citedreferenceWestoby, M. 1998. A leaf‐height‐seed (LHS) plant ecology strategy scheme. Plant and Soil 199: 213 – 227.
dc.identifier.citedreferenceWildová, R., L. Gough, T. Herben, C. Hershock, and D. E. Goldberg. 2007. Architectural and growth traits differ in effects on performance of clonal plants: an analysis using a field‐parameterized simulation model. Oikos 116: 836 – 852.
dc.identifier.citedreferenceWright, I. J., et al. 2005. Modulation of leaf economic traits and trait relationships by climate. Global Ecology and Biogeography 14: 411 – 421.
dc.identifier.citedreferenceZobel, M., M. Moora, and T. Herben. 2010. Clonal mobility and its implications for spatio‐temporal patterns of plant communities: What do we need to know next? Oikos 119: 802 – 806.
dc.identifier.citedreferenceAronson, E. L., and S. G. McNulty. 2009. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agricultural and Forest Meteorology 149: 1791 – 1799.
dc.identifier.citedreferenceBrooks, S. P. B., and A. G. Gelman. 1998. General methods for monitoring convergence of iterative simulations. Journal of Computational and Graphical Statistics 7: 434 – 455.
dc.identifier.citedreferenceBullock, J., B. Hill, J. Silvertown, and M. Sutton. 1995. Gap colonization as a source of grassland community change: effects of gap size and grazing on the rate and mode of colonization by different species. Oikos 2: 273 – 282.
dc.identifier.citedreferenceCallaway, R., R. Brooker, and P. Choler. 2002. Positive interactions among alpine plants increase with stress. Nature 417: 844 – 848.
dc.identifier.citedreferenceCornelissen, J., et al. 2003. A handbook of protocols for standardised and easy measurement of plant functional traits worldwide. Australian Journal of Botany 51: 335 – 380.
dc.identifier.citedreferenceCornwell, W., and D. Ackerly. 2009. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79: 109 – 126.
dc.identifier.citedreferenceDe Bello, F., J. Lepš, and M. T. Sebastià. 2005. Predictive value of plant traits to grazing along a climatic gradient in the Mediterranean. Journal of Applied Ecology 42: 824 – 833.
dc.identifier.citedreferenceDirnböck, T., and S. Dullinger. 2004. Habitat distribution models, spatial autocorrelation, functional traits and dispersal capacity of alpine plant species. Journal of Vegetation Science 15: 77 – 84.
dc.identifier.citedreferenceDjukic, I., F. Zehetner, A. Mentler, and M. Gerzabek. 2010. Microbial community composition and activity in different Alpine vegetation zones. Soil Biology and Biochemistry 42: 155 – 161.
dc.identifier.citedreferenceEnquist, B. J., J. Norberg, S. P. Bonser, C. Violle, C. T. Webb, A. Henderson, L. L. Sloat, and V. M. Savage. 2015. Scaling from traits to ecosystems: developing a general Trait Driver Theory via integrating trait‐based and metabolic scaling theories. Advances in Ecological Research 52: 249 – 318.
dc.identifier.citedreferenceEriksson, O. 1994. Stochastic population dynamics of clonal plants: numerical experiments with ramet and genet models. Ecological Research 9: 257 – 268.
dc.identifier.citedreferenceFalster, D. S., and M. Westoby. 2003. Plant height and evolutionary games. Trends in Ecology and Evolution 18: 337 – 343.
dc.identifier.citedreferenceFonseca, C. R., J. M. Overton, B. Collins, and M. Westoby. 2000. Shifts in trait‐combinations along rainfall and phosphorus gradients. Journal of Ecology 88: 964 – 977.
dc.identifier.citedreferenceGottfried, M., et al. 2012. Continent‐wide response of mountain vegetation to climate change. Nature Climate Change 2: 111 – 115.
dc.identifier.citedreferenceGraae, B. J., et al. 2012. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos 121: 3 – 19.
dc.identifier.citedreferenceHanssen‐Bauer, I., et al. 2009. Klima i Norge 2100, Bakgrunnsmateriale til NOU Klimatilpassin, Norsk Klimasenter, September 2009, Oslo, Norway.
dc.identifier.citedreferenceHobbie, S. E., and F. S. Chapin III. 1998. The response of tundra plant biomass, aboveground production, nitrogen, and CO2 flux to experimental warming. Ecology 79: 1526 – 1544.
dc.identifier.citedreferenceHooper, D. U., et al. 2002. Species diversity, functional diversity and ecosystem functioning. Pages 195 – 208 in M. Loreau, Naeem   S., Inchausti P. editors. Biodiversity and ecosystem functioning: synthesis and perspectives. Oxford University Press, Oxford, UK.
dc.identifier.citedreferenceHubbell, S. P. 2001. The unified neutral theory of biodiversity and biography. Monographs in population biology. Princeton University Press, Princeton, New Jersey, USA.
dc.identifier.citedreferenceHudson, J. M. G., G. H. R. Henry, and W. K. Cornwell. 2011. Taller and larger: shifts in Arctic tundra leaf traits after 16 years of experimental warming. Global Change Biology 17: 1013 – 1021.
dc.identifier.citedreferenceKimball, S., A. L. Angert, T. E. Huxman, and D. L. Venable. 2010. Contemporary climate change in the Sonoran Desert favors cold‐adapted species. Global Change Biology 16: 1555 – 1565.
dc.identifier.citedreferenceKlanderud, K., V. Vandvik, and D. Goldberg. 2015. The importance of biotic vs. abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS ONE 10: 1 – 14.
dc.identifier.citedreferenceKleyer, M., et al. 2008. The LEDA Traitbase: a database of life‐history traits of the Northwest European flora. Journal of Ecology 96: 1266 – 1274.
dc.identifier.citedreferenceKlimešová, J., and F. De Bello. 2009. CLO‐PLA: the database of clonal and bud bank traits of Central European flora. Journal of Vegetation Science 20: 511 – 516.
dc.identifier.citedreferenceKlimešová, J., and L. Klimes. 2007. Bud banks and their role in vegetative regeneration—a literature review and proposal for simple classification and assessment. Perspectives in Plant Ecology, Evolution and Systematics 8: 115 – 129.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe its collections in a way that respects the people and communities who create, use, and are represented in them. We encourage you to Contact Us anonymously if you encounter harmful or problematic language in catalog records or finding aids. More information about our policies and practices is available at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.