Show simple item record

Highâ throughput quantitative method for assessing coaggregation among oral bacterial species

dc.contributor.authorLevin‐sparenberg, E.
dc.contributor.authorShin, J.M.
dc.contributor.authorHastings, E.M.
dc.contributor.authorFreeland, M.
dc.contributor.authorSegaloff, H.
dc.contributor.authorRickard, A.H.
dc.contributor.authorFoxman, B.
dc.date.accessioned2016-10-17T21:20:29Z
dc.date.available2017-12-01T21:54:12Zen
dc.date.issued2016-10
dc.identifier.citationLevin‐sparenberg, E. ; Shin, J.M.; Hastings, E.M.; Freeland, M.; Segaloff, H.; Rickard, A.H.; Foxman, B. (2016). "Highâ throughput quantitative method for assessing coaggregation among oral bacterial species." Letters in Applied Microbiology 63(4): 274-281.
dc.identifier.issn0266-8254
dc.identifier.issn1472-765X
dc.identifier.urihttps://hdl.handle.net/2027.42/134280
dc.description.abstractThis paper describes a highâ throughput method that relies upon a microplate reader to score coaggregation 60 min postmixing, and use of a highâ speed realâ time imaging technology to describe the rate of coaggregation over time. The results of visual, microplate, and FlowCamâ ¢ aggregation scores for oral bacteria Streptococcus gordonii, Streptococcus oralis, and Actinomyces oris, whose ability to coaggregate are well characterized, are compared. Following mixing of all possible pairs, the top fraction of the supernatant was added to a microplate to quantify cellâ density. Pairs were also passed through a flow cell within a FlowCamâ ¢ to quantify the rate of coaggregation of each pair. Results from both the microplate and FlowCamâ ¢ approaches correlated with corresponding visual coaggregation scores and microscopic observations. The microplateâ based assay enables highâ throughput screening, whereas the FlowCamâ ¢â based assay validates and quantifies the extent that autoaggregation and coaggregation occur. Together these assays open the door for future inâ depth studies of autoaggregation and coaggregation among large panels of test strains.Significance and Impact of the StudyCoaggregation between bacterial species is integral to multiâ species biofilm development. Difficulties in rapidly and reproducibly identifying and quantifying coaggregation have limited mechanistic studies. This paper demonstrates two complementary quantitative methods to screen for coaggregation. The first approach uses a microplateâ based highâ throughput approach and the other uses a FlowCamâ ¢ device. The microplateâ based approach enables rapid detection of coaggregation between candidate coaggregating pairs of strains simultaneously while controlling for variation between replicates. The FlowCamâ ¢ approach allows for inâ depth analysis of the rates of coaggregation and size of aggregates formed.Significance and Impact of the Study: Coaggregation between bacterial species is integral to multiâ species biofilm development. Difficulties in rapidly and reproducibly identifying and quantifying coaggregation have limited mechanistic studies. This paper demonstrates two complementary quantitative methods to screen for coaggregation. The first approach uses a microplateâ based highâ throughput approach and the other uses a FlowCamâ ¢ device. The microplateâ based approach enables rapid detection of coaggregation between candidate coaggregating pairs of strains simultaneously while controlling for variation between replicates. The FlowCamâ ¢ approach allows for inâ depth analysis of the rates of coaggregation and size of aggregates formed.
dc.publisherWiley Periodicals, Inc.
dc.subject.otherCoaggregation
dc.subject.otherStreptococci
dc.subject.otherActinomycetes
dc.subject.otherBiofilms
dc.subject.otherBiotechnology
dc.titleHighâ throughput quantitative method for assessing coaggregation among oral bacterial species
dc.typeArticleen_US
dc.rights.robotsIndexNoFollow
dc.subject.hlbsecondlevelMicrobiology and Immunology
dc.subject.hlbtoplevelHealth Sciences
dc.description.peerreviewedPeer Reviewed
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134280/1/lam12622_am.pdf
dc.description.bitstreamurlhttp://deepblue.lib.umich.edu/bitstream/2027.42/134280/2/lam12622.pdf
dc.identifier.doi10.1111/lam.12622
dc.identifier.sourceLetters in Applied Microbiology
dc.identifier.citedreferenceNagaoka, S., Hojo, K., Murata, S., Mori, T., Ohshima, T. and Maeda, N. ( 2008 ) Interactions between salivary Bifidobacterium adolescentis and other oral bacteria: in vitro coaggregation and coadhesion assays. FEMS Microbiol Lett 281, 183 â 189.
dc.identifier.citedreferenceBurmølle, M., Webb, J.S., Rao, D., Hansen, L.H., Sørensen, S.J. and Kjelleberg, S. ( 2006 ) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72, 3916 â 3923.
dc.identifier.citedreferenceBusscher, H.J., Bos, R and Van der Mei, H.C. ( 1995 ) Initial microbial adhesion is a determinant for the strength of biofilm adhesion. FEMS Microbiol Lett 128, 229 â 234.
dc.identifier.citedreferenceCisar, J.O., Kolenbrander, P.E. and McIntire, F. ( 1979 ) Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect Immun 24, 742 â 752.
dc.identifier.citedreferenceFluid Imaging Technologies Inc. FlowCam. Particle Analysis with Vision. http://www.fluidimaging.com/.
dc.identifier.citedreferenceGilbert, P., Mairaâ Litran, T., McBain, A.J., Rickard, A.H. and Whyte, F.W. ( 2002 ) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46, 202.
dc.identifier.citedreferenceIkegami, A., Honma, K., Sharma, A. and Kuramitsu, H.K. ( 2004 ) Multiple functions of the leucineâ rich repeat protein LrrA of Treponema denticola. Infect Immun 72, 4619 â 4627.
dc.identifier.citedreferenceJensen, H., Biggs, C. and Karunakaran, E. ( 2016 ) The importance of sewer biofilms. WIREs Water 3, 487 â 494.
dc.identifier.citedreferenceKathariosâ Lanwermeyer, S., Xi, C., Jakubovics, N.S. and Rickard, A.H. ( 2014 ) Miniâ review: microbial coaggregation: ubiquity and implications for biofilm development. Biofouling, 30, 1235 â 1251.
dc.identifier.citedreferenceKinder, S.A. and Holt, S.C. ( 1994 ) Coaggregation between bacterial species. Methods Enzymol, 236, 254 â 270.
dc.identifier.citedreferenceKolenbrander, P. ( 1988 ) Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu Rev Microbiol 42, 627 â 656.
dc.identifier.citedreferenceKolenbrander, P.E. ( 2000 ) Oral microbial communities: biofilms, interactions, and genetic systems. Annu Rev Microbiol 54, 413 â 437.
dc.identifier.citedreferenceKolenbrander, P.E., Andersen, R.N. and Moore, L.V. ( 1990 ) Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl Environ Microbiol 56, 3890 â 3894.
dc.identifier.citedreferenceKolenbrander, P.E., Palmer, R.J., Periasamy, S. and Jakubovics, N.S. ( 2010 ) Oral multispecies biofilm development and the key role of cellâ cell distance. Nat Rev Microbiol 8, 471 â 480.
dc.identifier.citedreferenceKoop, H.M., Valentijnâ Benz, M., Nieuw Amerongen, A.V., Roukema, P.A. and De Graaff, J. ( 1989 ) Aggregation of 27 oral bacteria by human whole saliva. Influence of culture medium, calcium, and bacterial cell concentration, and interference by autoaggregation. Antonie Van Leeuwenhoek, 55, 277 â 290.
dc.identifier.citedreferenceLedder, R.G., Timperley, A.S., Friswell, M.K., Macfarlane, S. and McBain, A.J. ( 2008 ) Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiol Ecol 66, 630 â 636.
dc.identifier.citedreferenceMin, K.R., Zimmer, M.N. and Rickard, A.H. ( 2010 ) Physicochemical parameters influencing coaggregation between the freshwater bacteria Sphingomonas natatoria 2.1 and Micrococcus luteus 2.13. Biofouling, 26, 931 â 940.
dc.identifier.citedreferenceTaweechaisupapong, S. and Doyle, R.J. ( 2000 ) Sensitivity of bacterial coaggregation to chelating agents. FEMS Immunol Med Microbiol 28, 343 â 346.
dc.identifier.citedreferencePalmer, R., Kazmerzak, K., Hansen, M. and Kolenbrander, P. ( 2001 ) Mutualism versus independence: strategies of mixedâ species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun 69, 5794 â 5804.
dc.identifier.citedreferencePostollec, F., Norde, W., van der Mei, H.C. and Busscher, H.J. ( 2005 ) Microcalorimetric study on the influence of temperature on bacterial coaggregation. J Colloid Interface Sci 287, 461 â 467.
dc.identifier.citedreferenceRickard, A.H., Leach, S.A., Buswell, C.M., High, N.J. and Handley, P.S. ( 2000 ) Coaggregation between aquatic bacteria is mediated by specificâ growthâ phaseâ dependent lectinâ saccharide interactions. Appl Environ Microbiol, 66, 431 â 434. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=91843&tool=pmcentrez&rendertype=abstract.
dc.identifier.citedreferenceRickard, A.H., Gilbert, P., High, N.J., Kolenbrander, P.E. and Handley, P.S. ( 2003 ) Bacterial coaggregation: an integral process in the development of multiâ species biofilms. Trends Microbiol 11, 94 â 100.
dc.identifier.citedreferenceSegaloff, H.E.G., Podhorez, M.E., Nemetz, M., Younger, J.G., Jakubovics, N.S. and Rickard, A.H. ( 2014 ). Coaggregation between Streptococcus gordonii and Streptococcus oralis is Growthâ Media Dependent. Conference paper: AADR Annual Meeting and Exhibition 2014. https://www.researchgate.net/publication/266778750_Coaggregation_between_Streptococcus_gordonii_and_Streptococcus_oralis_is_Growth-Media_Dependent.
dc.identifier.citedreferenceVornhagen, J., Stevens, M., McCormick, D.W., Dowd, S.E., Eisenberg, J.N.S., Boles, B.R. and Rickard, A.H. ( 2013 ) Coaggregation occurs amongst bacteria within and between biofilms in domestic showerheads. Biofouling 29, 53 â 68.
dc.identifier.citedreferenceWatnick, P. and Kolter, R. ( 2000 ) Biofilm, city of microbes. J Bacteriol, 182, 2675 â 2679. Retrieved from http://jb.asm.org/content/182/10/2675.short.
dc.identifier.citedreferenceYounes, J.A., van der Mei, H.C., van den Heuvel, E., Busscher, H.J. and Reid, G. ( 2012 ) Adhesion forces and coaggregation between vaginal Staphylococci and Lactobacilli. PLoS ONE 7, e36917.
dc.identifier.citedreferenceArzmi, M.H., Dashper, S., Catmull, D., Cirillo, N., Reynolds, E.C. and McCullough, M. ( 2015 ) Coaggregation of Candida albicans, Actinomyces naeslundii and Streptococcus mutans is Candida albicans strain dependent. FEMS Yeast Res 15, fov038.
dc.identifier.citedreferenceBradshaw, D., Homer, K., Marsh, P. and Beighton, D. ( 1994 )  Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140, 3407 â 3412.
dc.owningcollnameInterdisciplinary and Peer-Reviewed


Files in this item

Show simple item record

Remediation of Harmful Language

The University of Michigan Library aims to describe library materials in a way that respects the people and communities who create, use, and are represented in our collections. Report harmful or offensive language in catalog records, finding aids, or elsewhere in our collections anonymously through our metadata feedback form. More information at Remediation of Harmful Language.

Accessibility

If you are unable to use this file in its current format, please select the Contact Us link and we can modify it to make it more accessible to you.